Diagnostic Assay Developed for Unclassified Severe Combined Immune Deficiency
By LabMedica International staff writers Posted on 30 Jun 2020 |

Image: MACS cell separation kit uses a combination of superparamagnetic nano-sized beads and a very high magnetic gradient in MACS Columns (Photo courtesy of Miltenyi Biotec).
Severe combined immune deficiency (SCID) is a group of rare hereditary genetic disorders, and is characterized by a total absence of immune system function, including an absence of T-lymphocytes, the white blood cells that play a crucial role in the body's immune defense.
Without appropriate treatment, this disorder is fatal during the first months of life in the majority of cases. Newborn screening has led to an increased incidence of patients diagnosed with SCID. Although many SCID-causing genes have been identified, clinicians may face a patient without any abnormal gene identified even with advanced sequencing technologies.
A team of scientists from The Centre Hospitalier Universitaire Sainte-Justine (Montreal, QC, Canada) isolated a very small number of stem cells from patients using a limited amount of blood (3mL to 5 mL). A test with a 3-dimensional (3D) culture that mimics the function of a human thymus is used to test this small number of cells, and a response is obtained in less than five weeks. If the results are normal, thymus transplantation is recommended, but if they are abnormal, then a bone marrow transplant is preferred.
For 3D culture, CD34+ cells were purified from mononuclear cells purified by Ficoll from either fresh or frozen and thawed umbilical cord blood (CB) or peripheral blood (PB) using the MACS kit (Miltenyi Biotec, Bergisch Gladbach, Germany). CD34+ cells were mixed with trypsin-harvested OP9-DLL4 cells (1:23 mix) to form a 2.5-µL cell pellet, which was placed on a dry 25-mm polycarbonate culture insert. This insert was transferred in a 6-well dish containing 1.5 mL media. Media was changed every three or four days. Cells were harvested from the insert for fluorescence-activated cell sorter analysis.
The investigators applied the in vitro 3D T-cell differentiation assay to verify whether they could discern intrinsic from extrinsic hematopoietic stem cell (HSC) differentiation defects using limiting quantities of peripheral blood from young SCID patients. As a demonstration of an intrinsic defect of differentiation, they showed that PB-CD34+ HSCs from an IL2RG/γc patient could not differentiate into CD34−CD7+CD1a+ double-negative (DN) cells, CD4+CD8+ double-positive (DP) cells, or CD3+ cells after three weeks of culture, although CD34+CD7+ pro-T cells were abundantly present.
On the other hand, PB-CD34+ HSCs from a SCID patient with complete RAG2 deficiency (null mutation) advanced normally to the CD34−CD7+CD1a+ DN stage, with scarce presence of CD4+CD8+ DP cells (0.72% versus 22.7% for control) and no CD3+ cells after five weeks of culture. An additional RAG1 hypomorph patient presenting with Omenn syndrome could however differentiate efficiently up to the CD4+CD8+ DP stage (39.5% versus 12.36% for control) after five weeks of culture, but did not show evidence of CD3+ cell presence.
The authors concluded that they have presented a proof-of-principle for an assay using cells obtained from a minimal volume of PB to inform the physician about the approximate level of deficiency (hematopoietic stem and progenitor cell versus thymus defect) in unclassified SCID. The study was published on June 17, 2020 in the journal Blood Advances.
Related Links:
The Centre Hospitalier Universitaire Sainte-Justine
Miltenyi Biotec
Without appropriate treatment, this disorder is fatal during the first months of life in the majority of cases. Newborn screening has led to an increased incidence of patients diagnosed with SCID. Although many SCID-causing genes have been identified, clinicians may face a patient without any abnormal gene identified even with advanced sequencing technologies.
A team of scientists from The Centre Hospitalier Universitaire Sainte-Justine (Montreal, QC, Canada) isolated a very small number of stem cells from patients using a limited amount of blood (3mL to 5 mL). A test with a 3-dimensional (3D) culture that mimics the function of a human thymus is used to test this small number of cells, and a response is obtained in less than five weeks. If the results are normal, thymus transplantation is recommended, but if they are abnormal, then a bone marrow transplant is preferred.
For 3D culture, CD34+ cells were purified from mononuclear cells purified by Ficoll from either fresh or frozen and thawed umbilical cord blood (CB) or peripheral blood (PB) using the MACS kit (Miltenyi Biotec, Bergisch Gladbach, Germany). CD34+ cells were mixed with trypsin-harvested OP9-DLL4 cells (1:23 mix) to form a 2.5-µL cell pellet, which was placed on a dry 25-mm polycarbonate culture insert. This insert was transferred in a 6-well dish containing 1.5 mL media. Media was changed every three or four days. Cells were harvested from the insert for fluorescence-activated cell sorter analysis.
The investigators applied the in vitro 3D T-cell differentiation assay to verify whether they could discern intrinsic from extrinsic hematopoietic stem cell (HSC) differentiation defects using limiting quantities of peripheral blood from young SCID patients. As a demonstration of an intrinsic defect of differentiation, they showed that PB-CD34+ HSCs from an IL2RG/γc patient could not differentiate into CD34−CD7+CD1a+ double-negative (DN) cells, CD4+CD8+ double-positive (DP) cells, or CD3+ cells after three weeks of culture, although CD34+CD7+ pro-T cells were abundantly present.
On the other hand, PB-CD34+ HSCs from a SCID patient with complete RAG2 deficiency (null mutation) advanced normally to the CD34−CD7+CD1a+ DN stage, with scarce presence of CD4+CD8+ DP cells (0.72% versus 22.7% for control) and no CD3+ cells after five weeks of culture. An additional RAG1 hypomorph patient presenting with Omenn syndrome could however differentiate efficiently up to the CD4+CD8+ DP stage (39.5% versus 12.36% for control) after five weeks of culture, but did not show evidence of CD3+ cell presence.
The authors concluded that they have presented a proof-of-principle for an assay using cells obtained from a minimal volume of PB to inform the physician about the approximate level of deficiency (hematopoietic stem and progenitor cell versus thymus defect) in unclassified SCID. The study was published on June 17, 2020 in the journal Blood Advances.
Related Links:
The Centre Hospitalier Universitaire Sainte-Justine
Miltenyi Biotec
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Clinical Chemistry
view channel
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read moreMolecular Diagnostics
view channel
Liquid Biopsy Assay Detects Recurrence in CRC Patients Prior to Imaging
The detection of circulating tumor DNA (ctDNA) after treatment is a strong indicator of recurrence in colorectal cancer (CRC), but it often goes undetected due to the low traces of ctDNA present in the blood.... Read more
Ultra Fast Synovial Fluid Test Diagnoses Osteoarthritis and Rheumatoid Arthritis In 10 Minutes
Studies indicate that more than 50% of individuals aged 65 and older experience symptoms of osteoarthritis, while rheumatoid arthritis is a serious chronic condition affecting approximately 1 in 100 people... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read more
AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping
Pediatric sarcomas are rare and diverse tumors that can develop in various types of soft tissue, such as muscle, tendons, fat, blood or lymphatic vessels, nerves, or the tissue surrounding joints.... Read more
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more