A Simple Paper-Based, Wearable Device for Long Term Sweat Analysis
|
By LabMedica International staff writers Posted on 16 Jun 2020 |

Image: The evaporation of sweat on paper pads could be used for fluid transport in a wearable device over long periods of time. The resulting dry layer of caked salts would preserve a `time-stamped` record of biomarkers of interest (Photo courtesy of Dr. Orlin D. Velev and co-authors, North Carolina State University)
By cleverly manipulating paper geometry, researchers created a paper-based wearable device to collect, transport, and analyze sweat for an extended period.
Sweat can be used to obtain an exact measurement of concentrations of medications in the blood. Furthermore, the concentrations of stress biomarkers (hormones and neurotransmitters) in bodily fluids such as sweat predict the physical and mental state of the individual.
A major problem that has so far restricted the use of wearable paper-based sweat sensors is that sweat contains salt, which, upon evaporation, becomes deposited on the device and interferes with fluid flow. To solve this problem, investigators at North Carolina State University (Raleigh, USA) characterized and analyzed how capillary action and evaporation could cooperatively be used to transport and process a sweat-like fluid containing dissolved salts and model analytes.
The investigators postulated that the joint action of capillary wicking and evaporation would sustain continuous and long-term withdrawal of the sweat-like fluid. In the laboratory they then demonstrated that paper strips of controlled geometry could passively pump fluid for sensing purposes for long duration. Thus, non-invasive osmotic extraction combined with paper microfluidics and evaporative disposal enabled sweat collection and monitoring for periods exceeding 10 days. Since the process was driven by the liquid wicking through paper, the device did not require an external power source.
The investigators also demonstrated that the salt film deposited at the evaporation pad would eventually lead to cessation of the process but at the same time would preserve a record of analytes that could be used for long-term biomarker monitoring in sweat.
"We expected that the flow of the model sweat will be suppressed by the deposition of a salt layer inside the drying pad," said senior author Dr. Orlin Velev, professor of chemical and biomolecular engineering at North Carolina State University. "By following the flow of model sweat, we found, quite surprisingly, that such a simple paper construct can achieve continuous sweat pumping and disposal for very long periods."
The wearable device for sweat analysis was described in the June 9, 2020, online edition of the journal Biomicrofluidics.
Related Links:
North Carolina State University
Sweat can be used to obtain an exact measurement of concentrations of medications in the blood. Furthermore, the concentrations of stress biomarkers (hormones and neurotransmitters) in bodily fluids such as sweat predict the physical and mental state of the individual.
A major problem that has so far restricted the use of wearable paper-based sweat sensors is that sweat contains salt, which, upon evaporation, becomes deposited on the device and interferes with fluid flow. To solve this problem, investigators at North Carolina State University (Raleigh, USA) characterized and analyzed how capillary action and evaporation could cooperatively be used to transport and process a sweat-like fluid containing dissolved salts and model analytes.
The investigators postulated that the joint action of capillary wicking and evaporation would sustain continuous and long-term withdrawal of the sweat-like fluid. In the laboratory they then demonstrated that paper strips of controlled geometry could passively pump fluid for sensing purposes for long duration. Thus, non-invasive osmotic extraction combined with paper microfluidics and evaporative disposal enabled sweat collection and monitoring for periods exceeding 10 days. Since the process was driven by the liquid wicking through paper, the device did not require an external power source.
The investigators also demonstrated that the salt film deposited at the evaporation pad would eventually lead to cessation of the process but at the same time would preserve a record of analytes that could be used for long-term biomarker monitoring in sweat.
"We expected that the flow of the model sweat will be suppressed by the deposition of a salt layer inside the drying pad," said senior author Dr. Orlin Velev, professor of chemical and biomolecular engineering at North Carolina State University. "By following the flow of model sweat, we found, quite surprisingly, that such a simple paper construct can achieve continuous sweat pumping and disposal for very long periods."
The wearable device for sweat analysis was described in the June 9, 2020, online edition of the journal Biomicrofluidics.
Related Links:
North Carolina State University
Latest Molecular Diagnostics News
- New DNA Test Tracks Spread of Parasitic Disease from Single Sample
- Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
- Genetic Testing Trifecta Predicts Risk of Sudden Cardiac Death and Arrhythmia
- Maternal Blood Test Detects Pre-Eclampsia Risk Before Symptoms Develop
- Blood Test Could Assess Concussion Severity in Teenagers with TBI
- Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
- New Biomarker Panel to Improve Heart Failure Diagnosis in Women
- Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
- Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes
- High-Sensitivity Troponin I Assay Aids in Diagnosis of Myocardial Infarction
- Fast Low-Cost Alzheimer’s Tests Could Detect Disease in Early and Silent Stages
- Further Investigation of FISH-Negative Tests for Renal Cell Carcinoma Improves Diagnostic Accuracy
- First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
- Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
- New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








