Susceptibility Gene Identified for Idiopathic Pulmonary Arterial Hypertension
By LabMedica International staff writers Posted on 14 Apr 2020 |

Image: The 96-capillary 3730xl DNA Analyzer is the Gold Standard for high throughput genetic analysis and used for Sanger sequencing (Photo courtesy of Thermo Fisher Scientific)
Idiopathic pulmonary arterial hypertension (IPAH) is a lung disorder characterized by high blood pressure in the pulmonary arteries. In this instance, “idiopathic” means that the cause of the pulmonary artery hypertension is unknown.
Pulmonary arterial hypertension is rare, with about 1,000 new diagnoses in the USA each year. IPAH is a hard disorder to diagnose because some people do not have symptoms, and when there are symptoms of IPAH, they are similar to those of other heart and lung disorders.
Scientists at the Peking Union Medical College Hospital (Beijing, China) and their colleagues enrolled 230 patients with IPAH from two referral pulmonary hypertension centers in China. Eligible patients had no BMPR2 variants and were compared with 968 healthy control participants. Data were collected from January 1, 2000, to July 31, 2015, and analyzed from August 1, 2015, to May 30, 2018.
The investigators sequenced the genomes of 42 patients with IPAH, none of whom had BMPR2 variants. The team also performed whole genome sequencing (WGS), Sanger sequencing on an ABI 3730 automated sequencer (Applied Biosystems, Courtaboeuf, France), right heart catheterization, pulmonary vasodilator testing, plasmid construction, cell culture and transfection, measurement of 6-Keto–prostaglandin F1α levels using an enzyme-linked immunosorbent assay (ELISA) kit (Cayman Chemical, Ann Arbor, MI, USA).
After filtering, the scientists uncovered 1,986 rare variants affecting 1,772 candidate genes. Most of these alterations were present only in a single person, but 15 genes were altered in three or more people. Of those, PTGIS, MACF1, GTF3C1, and ABCA3 are expressed in the lung. As PTGIS encodes prostaglandin synthase, which is involved in prostaglandin production, the team suspected it might be the most relevant of those 15 genes. In a replication cohort of 188 patients with IPAH, they uncovered additional patients with PTGIS variants. In all, 14 patients harbored one of three rare PTGIS variants.
The three rare PTGIS variants: A447T, R252Q, and c.521 +1G>A, are all located in conserved regions of the gene and are predicted by in silico analysis to be deleterious. Functional studies found that the PTGIS splicing variant affects the gene's transcription, as it led to exon skipping and an in-frame deletion. The two missense variants, meanwhile, led to impaired enzyme activity, decreased prostaglandin production, and increased cell death of pulmonary microvascular endothelial cells.
The authors concluded that they had identified three rare loss-of-function variants in the PTGIS gene from two independent cohorts with IPAH. The genetic variants of PTGIS predispose pulmonary vascular responses to the iloprost stimulation. These findings suggest that PTGIS variants may be involved in the pathogenesis of IPAH. The study was published on April 1, 2020 in the journal JAMA Cardiology.
Related Links:
Peking Union Medical College Hospital
Applied Biosystems
Cayman Chemical
Pulmonary arterial hypertension is rare, with about 1,000 new diagnoses in the USA each year. IPAH is a hard disorder to diagnose because some people do not have symptoms, and when there are symptoms of IPAH, they are similar to those of other heart and lung disorders.
Scientists at the Peking Union Medical College Hospital (Beijing, China) and their colleagues enrolled 230 patients with IPAH from two referral pulmonary hypertension centers in China. Eligible patients had no BMPR2 variants and were compared with 968 healthy control participants. Data were collected from January 1, 2000, to July 31, 2015, and analyzed from August 1, 2015, to May 30, 2018.
The investigators sequenced the genomes of 42 patients with IPAH, none of whom had BMPR2 variants. The team also performed whole genome sequencing (WGS), Sanger sequencing on an ABI 3730 automated sequencer (Applied Biosystems, Courtaboeuf, France), right heart catheterization, pulmonary vasodilator testing, plasmid construction, cell culture and transfection, measurement of 6-Keto–prostaglandin F1α levels using an enzyme-linked immunosorbent assay (ELISA) kit (Cayman Chemical, Ann Arbor, MI, USA).
After filtering, the scientists uncovered 1,986 rare variants affecting 1,772 candidate genes. Most of these alterations were present only in a single person, but 15 genes were altered in three or more people. Of those, PTGIS, MACF1, GTF3C1, and ABCA3 are expressed in the lung. As PTGIS encodes prostaglandin synthase, which is involved in prostaglandin production, the team suspected it might be the most relevant of those 15 genes. In a replication cohort of 188 patients with IPAH, they uncovered additional patients with PTGIS variants. In all, 14 patients harbored one of three rare PTGIS variants.
The three rare PTGIS variants: A447T, R252Q, and c.521 +1G>A, are all located in conserved regions of the gene and are predicted by in silico analysis to be deleterious. Functional studies found that the PTGIS splicing variant affects the gene's transcription, as it led to exon skipping and an in-frame deletion. The two missense variants, meanwhile, led to impaired enzyme activity, decreased prostaglandin production, and increased cell death of pulmonary microvascular endothelial cells.
The authors concluded that they had identified three rare loss-of-function variants in the PTGIS gene from two independent cohorts with IPAH. The genetic variants of PTGIS predispose pulmonary vascular responses to the iloprost stimulation. These findings suggest that PTGIS variants may be involved in the pathogenesis of IPAH. The study was published on April 1, 2020 in the journal JAMA Cardiology.
Related Links:
Peking Union Medical College Hospital
Applied Biosystems
Cayman Chemical
Latest Molecular Diagnostics News
- Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
- Rapid Blood Test Identifies Pre-Symptomatic Patients with Parkinson’s Disease
- Blood Test for Early Alzheimer's Detection Achieves Over 90% Accuracy
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more