Phoenix CPO Test Evaluated for Detection of Carbapenemase Producers
By LabMedica International staff writers Posted on 14 Nov 2019 |

Image: The BD Phoenix CPO detect test will allow hospitals to identify infections caused by carbapenemase-producing organisms (CPOs) (Photo courtesy of Becton-Dickinson).
The use of nucleic acid amplification tests (NAAT) to identify rapidly Carbapenemase-Producing Organisms (CPO) from samples such as positive blood culture and stools is an alternative approach to establish rapidly an optimal empirical antibiotic therapy or for infectious control management.
Most carbapenemase NAAT panels detect the most frequent gene variants encoding for carbapenemases including KPC, NDM, OXA-48, VIM and IMP. However, these tests cannot exclude the presence of a gene encoding another carbapenemase type and are relatively expensive, hence preventing their use to screen systematically some specimen types or bacterial isolates with CPO suspicion, especially in low to very low prevalence countries.
Medical microbiologists at the Lausanne University Hospital (Lausanne, Switzerland) tested the performance of the Phoenix CPO Detect Test (Becton-Dickinson, Franklin Lakes, NJ, USA) on a collection of 92 molecularly-characterized CPO and 93 non-CPO. The collection included 27 non-fermentative bacteria and 158 Enterobacterales. In addition, 295 clinical isolates, including 135 isolates with suspected carbapenemase, were prospectively, but not consecutively isolated from various de-identified clinical specimens during a 10 months period ranging from January to October 2018.
MALDI-TOF was used as an additional phenotypic test to exclude the presence of carbapenemase activity in Phoenix CPO Detect test false positives. All false positive results of the Phoenix CPO Detect test from the prospective study were verified by NAAT testing using the BD MAX Check-Points CPO test. Whole genome sequencing and analysis with libraries prepared with the Nextera XT kit (Illumina, San Diego, USA).
In a retrospective study the scientists reported the Phoenix CPO test exhibited 92.4% accuracy, 97.8% sensitivity 87.1% specificity for carbapenemase detection. The Phoenix CPO test provided a classification to class A, B, and D for 81.3% of detected carbapenemases with 94.6% accuracy. In a prospective study, the CPO test detection performance showed 77.8% accuracy, 100% sensitivity and 67.8% specificity on 135 CPO suspicious isolates and 98.8% accuracy and specificity on 160 non-CPO suspicious isolates. Compared to routine testing, the implementation of the CPO test allowed a mean reduction of 21.3 hours in turnaround time (TAT), 16.8 minutes) in hands-on time (HOT), and CHF 20.6 in costs.
The authors concluded that the Phoenix CPO Detect test likely represents a new diagnostic tool with added value for the detection and management of CPO infection and colonization. The CPO test is reliable for the detection of CPO with a high sensitivity but the relatively low specificity requires the use of additional confirmatory methods. The carbapenemase classification accuracy is robust to provide preliminary results before molecular characterization. The study was published on October 18, 2019 in the journal Clinical Microbiology and Infection.
Related Links:
Lausanne University Hospital
Becton-Dickinson
Illumina
Most carbapenemase NAAT panels detect the most frequent gene variants encoding for carbapenemases including KPC, NDM, OXA-48, VIM and IMP. However, these tests cannot exclude the presence of a gene encoding another carbapenemase type and are relatively expensive, hence preventing their use to screen systematically some specimen types or bacterial isolates with CPO suspicion, especially in low to very low prevalence countries.
Medical microbiologists at the Lausanne University Hospital (Lausanne, Switzerland) tested the performance of the Phoenix CPO Detect Test (Becton-Dickinson, Franklin Lakes, NJ, USA) on a collection of 92 molecularly-characterized CPO and 93 non-CPO. The collection included 27 non-fermentative bacteria and 158 Enterobacterales. In addition, 295 clinical isolates, including 135 isolates with suspected carbapenemase, were prospectively, but not consecutively isolated from various de-identified clinical specimens during a 10 months period ranging from January to October 2018.
MALDI-TOF was used as an additional phenotypic test to exclude the presence of carbapenemase activity in Phoenix CPO Detect test false positives. All false positive results of the Phoenix CPO Detect test from the prospective study were verified by NAAT testing using the BD MAX Check-Points CPO test. Whole genome sequencing and analysis with libraries prepared with the Nextera XT kit (Illumina, San Diego, USA).
In a retrospective study the scientists reported the Phoenix CPO test exhibited 92.4% accuracy, 97.8% sensitivity 87.1% specificity for carbapenemase detection. The Phoenix CPO test provided a classification to class A, B, and D for 81.3% of detected carbapenemases with 94.6% accuracy. In a prospective study, the CPO test detection performance showed 77.8% accuracy, 100% sensitivity and 67.8% specificity on 135 CPO suspicious isolates and 98.8% accuracy and specificity on 160 non-CPO suspicious isolates. Compared to routine testing, the implementation of the CPO test allowed a mean reduction of 21.3 hours in turnaround time (TAT), 16.8 minutes) in hands-on time (HOT), and CHF 20.6 in costs.
The authors concluded that the Phoenix CPO Detect test likely represents a new diagnostic tool with added value for the detection and management of CPO infection and colonization. The CPO test is reliable for the detection of CPO with a high sensitivity but the relatively low specificity requires the use of additional confirmatory methods. The carbapenemase classification accuracy is robust to provide preliminary results before molecular characterization. The study was published on October 18, 2019 in the journal Clinical Microbiology and Infection.
Related Links:
Lausanne University Hospital
Becton-Dickinson
Illumina
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more