Biomarker Found for Celiac Patients on Gluten-Free Diet
|
By LabMedica International staff writers Posted on 19 Jun 2019 |

Representative histologic features of the small intestine. In the normal duodenal biopsy (A), the villi are elongated and the crypts relatively short. This is in contrast to the small intestinal tissue affected by celiac disease (B), which demonstrates marked villus blunting and crypt hyperplasia. (Photo courtesy of Tracy R. Ediger MD, and Ivor D. Hill, MD ChB).
Celiac disease is a complex condition, routinely treated by means of a strict gluten-free diet (GFD). One of the diagnostic challenges of this disease is that patients need to be consuming gluten so that a correct diagnosis by means of endoscopy can be made.
Celiac disease (CeD) is an immune-mediated enteropathy with a strong genetic component, where alleles encoding Human Leukocyte Antigen (HLA)-DQ2 and -DQ8 molecules account for 40% of disease heritability. A genetic, constitutive biomarker present also when the disease-triggering insult is absent would be extremely useful for the diagnosis this conditions.
Scientists associated with the University of the Basque Country (Leioa, Spain) hypothesized that merging different levels of genomic information through Mendelian Randomization (MR) could help discover genetic biomarkers useful for CeD diagnosis. MR was performed using public databases (9,451 cases and 16,434 controls) of expression quantitative trait loci (eQTL) and methylation QTL (mQTL) as exposures, and the largest CeD genome-wide association study (GWAS) conducted to date as the outcome, in order to identify potential causal genes.
The scientists identified UBE2L3, an ubiquitin ligase located in a CeD-associated region. They interrogated the expression of UBE2L3 in an independent dataset of peripheral blood mononuclear cells (PBMCs) and found that its expression is altered in CeD patients on GFD when compared to non-celiac controls. The relative expression of UBE2L3 isoforms predicts CeD with 100% specificity and sensitivity and could be used as a diagnostic marker, especially in the absence of gluten consumption.
The authors concluded that the relative expression of the isoforms of the UBE2L3 gene in the blood makes it possible to distinguish with 100% sensitivity and specificity celiac patients on a gluten-free diet. The approach used could be applicable to other diseases where diagnosis of asymptomatic patients can be complicated. The study was published on May 29, 2019, in the journal Human Molecular Genetics.
Related Links:
University of the Basque Country
Celiac disease (CeD) is an immune-mediated enteropathy with a strong genetic component, where alleles encoding Human Leukocyte Antigen (HLA)-DQ2 and -DQ8 molecules account for 40% of disease heritability. A genetic, constitutive biomarker present also when the disease-triggering insult is absent would be extremely useful for the diagnosis this conditions.
Scientists associated with the University of the Basque Country (Leioa, Spain) hypothesized that merging different levels of genomic information through Mendelian Randomization (MR) could help discover genetic biomarkers useful for CeD diagnosis. MR was performed using public databases (9,451 cases and 16,434 controls) of expression quantitative trait loci (eQTL) and methylation QTL (mQTL) as exposures, and the largest CeD genome-wide association study (GWAS) conducted to date as the outcome, in order to identify potential causal genes.
The scientists identified UBE2L3, an ubiquitin ligase located in a CeD-associated region. They interrogated the expression of UBE2L3 in an independent dataset of peripheral blood mononuclear cells (PBMCs) and found that its expression is altered in CeD patients on GFD when compared to non-celiac controls. The relative expression of UBE2L3 isoforms predicts CeD with 100% specificity and sensitivity and could be used as a diagnostic marker, especially in the absence of gluten consumption.
The authors concluded that the relative expression of the isoforms of the UBE2L3 gene in the blood makes it possible to distinguish with 100% sensitivity and specificity celiac patients on a gluten-free diet. The approach used could be applicable to other diseases where diagnosis of asymptomatic patients can be complicated. The study was published on May 29, 2019, in the journal Human Molecular Genetics.
Related Links:
University of the Basque Country
Latest Molecular Diagnostics News
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Enable Earlier Detection of Liver Cancer Recurrence After Transplant
- Finger Prick Blood Test Shows Promise for Early Alzheimer’s Detection
- Blood Test Breakthrough Enables Earlier, Less Invasive Endometriosis Detection
- Blood Test Could Identify High Risk Individuals for Type 2 Diabetes
- Blood Test Could Detect Molecular Barcodes Capable of Distinguishing Cancer Types
- AI Algorithm Predicts Cancer Metastasis and Recurrence Risk
- AI Accurately Predicts Prematurity Complications in Newborns from Blood Samples
- Diagnostic Toolbox to Rapidly and Reliably Detect Lymphatic Disease
- Next-Generation Sequencing Could Enhance Early Disease Detection in Newborns
- Simple Blood Test Detects Cancer in Patients with Non-Specific Symptoms
- New Method Accurately Predicts Asthma Attacks Five Years in Advance
- Hidden Genetic Subgroup Sheds New Light on Brain Tumors
- Multiplex PCR Panel Promises Faster Answers for GI Infections
- Blood Test Shows Extent of Brain Injury After Stroke
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
Transthyretin amyloidosis (ATTR) is a rare, progressive, and highly aggressive disease caused by the misfolding of a specific protein that accumulates as toxic amyloid filaments in multiple organs.... Read more
Fast Label-Free Method Identifies Aggressive Cancer Cells
Distinguishing aggressive cancer cells from less dangerous ones remains a major clinical challenge, as cells with high metastatic potential often appear similar under standard laboratory conditions.... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







