LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

3D-Printed Device Detects Biomarkers of Preterm Birth

By LabMedica International staff writers
Posted on 06 Jun 2019
Print article
Image: A diagram of the 3D-printed microchip electrophoresis device that can sensitively detect three serum biomarkers of preterm birth (Photo courtesy of Brigham Young University).
Image: A diagram of the 3D-printed microchip electrophoresis device that can sensitively detect three serum biomarkers of preterm birth (Photo courtesy of Brigham Young University).
Preterm birth (PTB), defined as birth before the 37th week of gestation, is the leading complication of pregnancy and it affects about 1 in 10 pregnancies worldwide. Preterm infants can suffer complications such as neurological, respiratory and cardiac problems and, in some cases, even death.

Scientists have previously identified biomarker peptides and proteins in maternal serum that can fairly accurately predict PTB at 28 weeks of gestation. However, existing methods for detecting the biomarkers are laborious or not very sensitive. Now scientists have created a 3D-printed microchip electrophoresis device that can sensitively detect three serum biomarkers of PTB.

Biochemists at Brigham Young University (Provo, UT, USA) demonstrated for the first time the creation of microchip electrophoresis devices with ∼50 μm cross-sectional dimensions by stereolithographic 3D printing and their application in the analysis of medically significant biomarkers related to risk for preterm birth (PTB).

The team printed their device onto a glass slide using a 3D printer with a custom resin as the ink. To achieve the best separation of three peptide biomarkers by electrophoresis, they optimized the device design, as well as parameters such as applied voltages and buffer identity and composition. The 3D-printed microchip could detect the three PTB biomarkers in the picomolar to low nanomolar range. They determined that device current was linear with applied potential up to 800 V (620 V/cm). The group optimized device and separation conditions using fluorescently labeled amino acids as a model system and compared the performance in their 3D printed microfluidic devices to that in other device materials commonly used for microchip electrophoresis analysis.

The authors concluded that they had demonstrated for the first time microchip electrophoresis in a 3D printed device of three PTB biomarkers, including peptides and a protein, with suitable separation characteristics. Limits of detection for microchip electrophoresis in 3D printed microfluidic devices were also determined for PTB biomarkers to be in the high picomolar to low nanomolar range. The study was published on May 6, 2019, in the journal Analytical Chemistry.

Related Links:
Brigham Young University

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Silver Member
Verification Panels for Assay Development & QC
Seroconversion Panels

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.