We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Methods Rapidly Diagnoses Huntington's Disease

By LabMedica International staff writers
Posted on 23 Jan 2019
Print article
Image: A sketch of µLAS chip with two independent channels actuated with the same pressure and voltage. Each channel contains a funnel region that functions to separate and concentrate DNA in line (Photo courtesy of University of Lausanne).
Image: A sketch of µLAS chip with two independent channels actuated with the same pressure and voltage. Each channel contains a funnel region that functions to separate and concentrate DNA in line (Photo courtesy of University of Lausanne).
People with Huntington's disease suffer from jerky body movements and decreasing mental abilities. The condition usually leads to death 15 to 20 years after diagnosis. The cause of the disease is a region in the Huntingtin gene (HTT) that is absent in healthy people.

A novel lab-on-chip system, termed µLAS (µLAboratory for DNA Separation) has been designed which is composed of two identical side-by-side channels operated with the same actuation parameters, so as to characterize a sample with respect to a reference DNA ladder in real time.

Scientists from the University of Lausanne (Lausanne, Switzerland) extracted the DNA from blood cells, amplified the concerned region and determined its size with a newly developed chip. The chip holds two small, funnel-shaped chambers a fraction of a millimeter wide. Voltage and pressure are applied to these chambers so as to separate the electrically charged DNA fragments according to their size. The smaller fragments are pushed down the funnel much more than the large ones. By adding a fluorescent dye, the team easily detected the exact position of the fragments under a microscope and deduced their length.

The variable length of the DNA fragments is caused by a repetition of three nucleotides of the genetic code (CAG), typical for trinucleotide diseases like Huntington's. The mutation leads to destructive changes in the encoded protein that are currently not fully understood, but the protein produced by the mutated gene is known to be toxic to brain cells. Healthy people have 35 or less of these repeats, whereas most patients have 40 or more. Knowing the exact size is important for forecasting and managing the incurable disease. The scientists detected heterogeneous allele lengths in eight samples from myotonic dystrophy type 1 and Huntington disease patients with up to 750 CAG/CTG repeats in five minutes or less.

The high sensitivity of the method allowed us to minimize the number of amplification cycles and thus reduce amplification artifacts without compromising the detection of the expanded allele. These results suggest that µLAS can speed up routine molecular biology applications of repetitive sequences and may improve the molecular diagnostic of expanded repeat disorders. Huntington's disease is only one of over twenty known trinucleotide diseases. Others are spinocerebellar ataxia, fragile X syndrome, myotonic dystrophy and Friedreich's ataxia. Currently there is no treatment available for these hereditary diseases. The study was published on January 10, 2019, in the journal Scientific Reports.

Related Links:
University of Lausanne

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb
New
Troponin I Test
Quidel Triage Troponin I Test

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.