LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Plasmodium vivax Isolated in Duffy Negative Individuals

By LabMedica International staff writers
Posted on 12 Dec 2018
Print article
Image: The CareStart HRP2 rapid diagnostic test for Plasmodium falciparum malaria (Photo courtesy of Access Bio).
Image: The CareStart HRP2 rapid diagnostic test for Plasmodium falciparum malaria (Photo courtesy of Access Bio).
Malaria in Nigeria is principally due to Plasmodium falciparum and, to a lesser extent to P. malariae and P. ovale. P. vivax is thought to be absent in Nigeria in particular and sub-Saharan Africa in general, due to the near fixation of the Duffy negative gene in this population.

Microscopy which is the gold standard for malaria diagnosis can detect Plasmodium infections in individuals with high level of parasitaemia; however parasite detection in individuals carrying low parasite density can be challenging, thus emphasizing the need for more sensitive diagnostic methods.

Medical parasitologists at the Université Cheikh Anta Diop (Dakar, Senegal) carried out a cross-sectional investigation involving 436 febrile patients were included for the present work patients presenting clinical symptoms of malaria and visiting any of the various hospitals in two study sites between September 2016 to March 2017. Venous blood of these patients was subjected to a P. falciparum specific HRP2 rapid diagnostic test, as well as microscopy.

Parasite DNA was isolated from positive samples and polymerase chain reaction (PCR) diagnostic was employed followed by direct sequencing of the 18S rRNA of Plasmodium species as well as sequencing of a portion of the promoter region of the Duffy antigen receptor for chemokines. Samples positive for P. vivax were re-amplified several times and finally using the High Fidelity Taq to rule out any bias introduced. In order to validate the different species identified by PCR in gel electrophoresis, the 18S rRNA gene of P. vivax and the DARC-coding gene of the P. vivax infected individuals were sequenced commercially by Inqaba Biotec.

The team reported that of the 256 (58.7%) amplifiable malaria parasite DNA, P. falciparum was, as expected, the major cause of infection, either alone 85.5% (219/256), or mixed with P. malariae 6.3% (16/256) or with P. vivax 1.6% (4/256). Only one of the five P. vivax isolates was found to be a single infection. DNA sequencing and subsequent alignment of the 18S rRNA of P. vivax with the reference strains displayed very high similarities (100%). Remarkably, the T-33C mutation was identified in all P. vivax samples, thus confirming that all vivax-infected patients in the current study are Duffy negative.

The authors concluded that given the fact that Nigeria accounts for 27% of the global malaria burden mostly due to P. falciparum, the addition of P. vivax to this, will ultimately add to the burden of country’s struggle to control malaria and the defensive barrier hypothesis against P. vivax infection due to the near fixation of the Duffy-negative gene in the African population should be investigated. The study was published on November 28, 2018, in the Malaria Journal.

Related Links:
Université Cheikh Anta Diop

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.