LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarker Low Predictive Power Validated for eGFR Decline

By LabMedica International staff writers
Posted on 06 Sep 2018
Print article
Image: The MAGPIX clinical multiplexing analyzer system (Photo courtesy of Luminex).
Image: The MAGPIX clinical multiplexing analyzer system (Photo courtesy of Luminex).
Glomerular filtration rate (GFR) is a measure of the function of the kidneys. This test measures the level of creatinine in the blood and uses the result in a formula to calculate a number that reflects how well the kidneys are functioning, called the estimated GFR or eGFR.

The decline of estimated glomerular filtration rate (eGFR) in patients with type 2 diabetes is variable, and early interventions would likely be cost-effective. The contribution of 17 plasma biomarkers to the prediction of eGFR loss on top of clinical risk factors has been elucidated.

A large team of scientists collaborating with the Medical University of Vienna (Vienna, Austria) studied participants in PROVALID (PROspective cohort study in 2,560 patients with type 2 diabetes mellitus for VALIDation of biomarkers), a prospective multinational cohort study of patients with type 2 diabetes and a follow-up of more than 24 months; (baseline median eGFR, 84 mL/min/1.73 m2; urine albumin-to-creatinine ratio, 8.1 mg/g). The 17 biomarkers were measured at baseline in 481 samples using Luminex and enzyme-linked immunosorbent assays (ELISA). The prediction of eGFR decline was evaluated by linear mixed modeling.

The investigators reported that in univariable analyses, nine of the 17 markers showed significant differences in median concentration between stable and fast-progressing patients. A linear mixed model for eGFR obtained by variable selection exhibited an adjusted R2 of 62%. A panel of 12 biomarkers was selected by the procedure and accounted for 34% of the total explained variability, of which 32% were due to five markers. These five biomarkers include Kidney injury molecule 1 (KIM1), Fibroblast growth factor 23 (FGF23), N-terminal pro b-type natriuretic peptide (NTproBNP), hepatocyte growth factor (HGF), and matrix metalloproteinase-1 (MMP1).

The individual contribution of each biomarker to the prediction of eGFR decline on top of clinical predictors was generally low. When included into the model, baseline eGFR exhibited the largest explained variability of eGFR decline (R2 of 79%), and the contribution of each biomarker dropped below 1%.

The authors concluded that in their longitudinal of patients with type 2 diabetes and maintained eGFR at baseline, 12 of the 17 candidate biomarkers were associated with eGFR decline, but their predictive power was low. Given the inferior performance of this highly selected set of biomarkers in early-stage chronic kidney disease patients to predict future eGFR loss, these markers are not likely to be useful for clinical decision-making. The study was published in the September 2018 issue of the journal Diabetes Care.

Related Links:
Medical University of Vienna

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.