Smart Phone Reader Detects Common Pathogens
|
By LabMedica International staff writers Posted on 10 May 2018 |

Image: The low-cost, portable laboratory on a phone that can interpret results from a microplate assay (Photo courtesy of Washington State University).
In rural or low resource areas, doctors sometimes must rely on a patient's symptoms or use their own judgement in looking at test sample color results to determine whether a patient has an infection.
A low-cost, portable laboratory on a phone has been developed that works nearly as well as clinical laboratories to detect common viral and bacterial infections. The work could lead to faster and lower-cost laboratory results for fast-moving viral and bacterial epidemics.
Bioengineers at Washington State University (Pullman, WA, USA) and their colleagues developed an ultra-low-cost clinically accurate mobile phone microplate reader (mReader), and clinically validated this optical device for 12 infectious disease tests. The mReader optically reads 96 samples on a microplate at one time. The team tested 771 de-identified patient samples for 12 serology assays for bacterial/viral infections. The mReader and the clinical instrument blindly read and analyzed all tests in parallel.
The scientists evaluated the analytical accuracy and the diagnostic performance of the mReader across the clinical reportable categories by comparison with clinical laboratorial testing results. The mReader exhibited 97.6% to 99.9% analytical accuracy and <5% coefficient of variation (CV). The positive percent agreement (PPA) in all 12 tests achieved 100%, negative percent agreement (NPA) was higher than 83% except for one test (42.9%), and overall percent agreement (OPA) ranged 89.3% to100%. The team was able to build the device for about USD 50, but the manufacturing cost would probably be lower than that.
The authors envision the mReader can benefit underserved areas/populations and low-resource settings in rural clinics/hospitals at a low cost with clinical-level analytical quality. It has the potential to improve health access, speed up healthcare delivery, and reduce health disparities and education disparities by providing access to a low-cost spectrophotometer. The study was published on March 23, 2018, in the journal Clinica Chimica Acta.
Related Links:
Washington State University
A low-cost, portable laboratory on a phone has been developed that works nearly as well as clinical laboratories to detect common viral and bacterial infections. The work could lead to faster and lower-cost laboratory results for fast-moving viral and bacterial epidemics.
Bioengineers at Washington State University (Pullman, WA, USA) and their colleagues developed an ultra-low-cost clinically accurate mobile phone microplate reader (mReader), and clinically validated this optical device for 12 infectious disease tests. The mReader optically reads 96 samples on a microplate at one time. The team tested 771 de-identified patient samples for 12 serology assays for bacterial/viral infections. The mReader and the clinical instrument blindly read and analyzed all tests in parallel.
The scientists evaluated the analytical accuracy and the diagnostic performance of the mReader across the clinical reportable categories by comparison with clinical laboratorial testing results. The mReader exhibited 97.6% to 99.9% analytical accuracy and <5% coefficient of variation (CV). The positive percent agreement (PPA) in all 12 tests achieved 100%, negative percent agreement (NPA) was higher than 83% except for one test (42.9%), and overall percent agreement (OPA) ranged 89.3% to100%. The team was able to build the device for about USD 50, but the manufacturing cost would probably be lower than that.
The authors envision the mReader can benefit underserved areas/populations and low-resource settings in rural clinics/hospitals at a low cost with clinical-level analytical quality. It has the potential to improve health access, speed up healthcare delivery, and reduce health disparities and education disparities by providing access to a low-cost spectrophotometer. The study was published on March 23, 2018, in the journal Clinica Chimica Acta.
Related Links:
Washington State University
Latest Microbiology News
- AI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
- New Test Measures How Effectively Antibiotics Kill Bacteria
- New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
- New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
- Breakthroughs in Microbial Analysis to Enhance Disease Prediction
- Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
Primary central nervous system lymphoma (PCNSL) is typically diagnosed through surgical biopsy, which remains the gold standard but carries substantial risk. Operability depends heavily on tumor location,... Read more
New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
Acute myeloid leukemia (AML) is one of the most aggressive blood cancers, marked by poor survival rates and limited treatment options, especially in patients who do not respond to standard therapies.... Read moreHematology
view channel
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
Accurately identifying genetic mutations is central to cancer diagnostics and genomic research, but current methods struggle with complex sequencing data and limited clinical samples. Tumor analysis often... Read more
Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
Transthyretin amyloidosis (ATTR) is a rare, progressive, and highly aggressive disease caused by the misfolding of a specific protein that accumulates as toxic amyloid filaments in multiple organs.... Read moreIndustry
view channel
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







