高速分拣大细胞的泵
By LabMedica International staff writers Posted on 25 Aug 2017 |
图片:微流控芯片能够以16微秒的高速分拣细胞。放大视图展示了片上分拣小眼虫细胞(图片蒙名古屋大学惠赐)。
许多医疗应用场合必须分拣单个细胞,包括从细胞悬液中分离特定的细胞类型。科研人员已经用荧光活化细胞分拣(FACS)做高通量细胞分拣。
较大细胞的FACS要求在低压下处理样本,让样本通过更宽的喷嘴,以防止损坏,因此分拣受限于低水平通量。用激光激励液滴中细胞的自体荧光或标记荧光,然后使液滴发生偏转,按照不同特性进入不同容器。因为产生的喷雾剂导致样本感染,所以这项技术引人担忧。
日本名古屋大学的科学家研究细胞分拣时用一颗微流控芯片预防样本感染。这颗芯片有微通道,将细胞悬液导入微通道进行分拣。科研小组在微流控芯片里集成了两只外部驱动的片上泵,以实现高速的流控制。他们用一只高速发动器作为泵的动力源,成功生成了一股持续16微秒的液流,进行细胞分拣。
虽然提出了各种片上细胞分拣方法,但是大细胞的高通量分拣仍受制于在大范围分拣区内控制高速液流的困难。为克服这一难题,科研小组提出把压电发动器放在微流控芯片外,用它驱动双膜泵,实现高速的局部流控制。他们评估了把液流特征换成局部流的可控性。
他们用这项技术不仅能分拣大细胞,还能分拣小细胞,而且速度快,纯度高,活力强。以100微米左右的微藻类为例测试该方法,得到95.8%的纯度、90.8%的存活率和92.8%的成功率。他们用24微米左右的癌细胞作为小细胞的模型,得到了98.9%的纯度、90.7%的存活率和97.8%的成功率。
该研究的论文发表于2017年6月14日的《芯片实验室》杂志。领衔作者、助理教授Shinya Sakuma博士说:“微流控芯片拥有十字形分拣区和有三个分支的微流控通道。主通道里的靶体/非靶体细胞在三个维度上对齐。当检测到靶细胞时,片上泵迅速启动,把细胞拣入两条兴趣通道之一。同时,把非靶细胞冲入废料通道,泵不发动。
Related Links:
名古屋大学
较大细胞的FACS要求在低压下处理样本,让样本通过更宽的喷嘴,以防止损坏,因此分拣受限于低水平通量。用激光激励液滴中细胞的自体荧光或标记荧光,然后使液滴发生偏转,按照不同特性进入不同容器。因为产生的喷雾剂导致样本感染,所以这项技术引人担忧。
日本名古屋大学的科学家研究细胞分拣时用一颗微流控芯片预防样本感染。这颗芯片有微通道,将细胞悬液导入微通道进行分拣。科研小组在微流控芯片里集成了两只外部驱动的片上泵,以实现高速的流控制。他们用一只高速发动器作为泵的动力源,成功生成了一股持续16微秒的液流,进行细胞分拣。
虽然提出了各种片上细胞分拣方法,但是大细胞的高通量分拣仍受制于在大范围分拣区内控制高速液流的困难。为克服这一难题,科研小组提出把压电发动器放在微流控芯片外,用它驱动双膜泵,实现高速的局部流控制。他们评估了把液流特征换成局部流的可控性。
他们用这项技术不仅能分拣大细胞,还能分拣小细胞,而且速度快,纯度高,活力强。以100微米左右的微藻类为例测试该方法,得到95.8%的纯度、90.8%的存活率和92.8%的成功率。他们用24微米左右的癌细胞作为小细胞的模型,得到了98.9%的纯度、90.7%的存活率和97.8%的成功率。
该研究的论文发表于2017年6月14日的《芯片实验室》杂志。领衔作者、助理教授Shinya Sakuma博士说:“微流控芯片拥有十字形分拣区和有三个分支的微流控通道。主通道里的靶体/非靶体细胞在三个维度上对齐。当检测到靶细胞时,片上泵迅速启动,把细胞拣入两条兴趣通道之一。同时,把非靶细胞冲入废料通道,泵不发动。
Related Links:
名古屋大学