New sPCR Technology Runs on Standard Devices
|
By LabMedica International staff writers Posted on 24 Apr 2017 |

Image: A comparison of analytical PCR procedures (Photo courtesy of Scientific Reports).
Synergistic PCR (sPCR), a new method of DNA analysis developed for use on a new high-speed assay device, can also be carried out on widely available laboratory real-time PCR (qPCR) instruments and does not require calibration.
While developing a record high-speed genetic research tool, Curiosity Diagnostics (CD; Warsaw, Poland), a spinoff company of the Warsaw Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and part of the Scope Fluidics group, has developed the new sPCR method, which combines key advantages of the two currently most used methods.
"The DNA assay technique we propose was born during the development of the innovative PCR|ONE analytical instrument, which can be used to test the genetic code in only 7 minutes. This is more than 10-fold shorter time than is required in classic solutions," said Prof. Piotr Garstecki (IPC PAS, CD).
PCR is used both to detect specific DNA fragments and to estimate the original amount of genetic material. In quantitative PCR (qPCR) measurements are usually carried out using real-time PCR – an analogue technique. Due to the sensitivity of PCR to even single particles of impurities, qPCR requires careful, continuous calibration. Conversely, in digital PCR (dPCR) there is no need to calibrate the device, however, because of the need to conduct a large number of reactions in parallel, the testing equipment is expensive and is not as common in laboratories as the analogue apparatus.
sPCR combines the most important advantages of analogue and digital methods to obtain reliable measurements: it is sufficient to dilute a sample into only a dozen or at most several dozen partitions, and calibration is not required.
"A small number of partitions, characteristic of our technique, are of specific practical significance. It means that to perform the analysis all that is needed is the standard well plate format used in popular analogue PCR devices," said Pawel Debski, an IPC PAS PhD student who developed the sPCR method with Curiosity Diagnostics.
Also due to a small number of sample partitions, the sPCR technique is easier to perform and slightly faster than digital variants. Compared to analogue techniques, however, more reagents are required, and so it will not replace the analogue variant. Nevertheless, sPCR could be a valuable addition, as it requires no calibration and so will allow laboratory staff to independently and regularly check the correctness of analogue measurements.
sPCR was developed as an integral component of PCR|ONE, an innovative device designed for rapid DNA analysis. In standard PCR machines, relatively slow heat diffusion between the sample and an adjacent large block of alternately heated or cooled material is used to heat and cool the genetic material. In PCR|ONE, infrared radiation is used to heat the sample rapidly. The diffusion cooling mechanism has also been modified: the block used for this purpose is smaller than in conventional instruments and it is maintained at a constant, strictly controlled temperature. As a result of the technical and analytical improvements, the currently being tested prototypes of PCR|ONE are able to complete DNA assays in less than 15 minutes, and the PCR itself takes only 7 minutes. The first PCR|ONE devices are expected to be commercially available in 2-3 years.
"Our DNA testing technique has been patented. However, we want to emphasize the freedom of using it for non-commercial purposes," said Prof. Garstecki.
The study, by Debski PR et al, was published March 22, 2017, in the journal Scientific Reports.
While developing a record high-speed genetic research tool, Curiosity Diagnostics (CD; Warsaw, Poland), a spinoff company of the Warsaw Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and part of the Scope Fluidics group, has developed the new sPCR method, which combines key advantages of the two currently most used methods.
"The DNA assay technique we propose was born during the development of the innovative PCR|ONE analytical instrument, which can be used to test the genetic code in only 7 minutes. This is more than 10-fold shorter time than is required in classic solutions," said Prof. Piotr Garstecki (IPC PAS, CD).
PCR is used both to detect specific DNA fragments and to estimate the original amount of genetic material. In quantitative PCR (qPCR) measurements are usually carried out using real-time PCR – an analogue technique. Due to the sensitivity of PCR to even single particles of impurities, qPCR requires careful, continuous calibration. Conversely, in digital PCR (dPCR) there is no need to calibrate the device, however, because of the need to conduct a large number of reactions in parallel, the testing equipment is expensive and is not as common in laboratories as the analogue apparatus.
sPCR combines the most important advantages of analogue and digital methods to obtain reliable measurements: it is sufficient to dilute a sample into only a dozen or at most several dozen partitions, and calibration is not required.
"A small number of partitions, characteristic of our technique, are of specific practical significance. It means that to perform the analysis all that is needed is the standard well plate format used in popular analogue PCR devices," said Pawel Debski, an IPC PAS PhD student who developed the sPCR method with Curiosity Diagnostics.
Also due to a small number of sample partitions, the sPCR technique is easier to perform and slightly faster than digital variants. Compared to analogue techniques, however, more reagents are required, and so it will not replace the analogue variant. Nevertheless, sPCR could be a valuable addition, as it requires no calibration and so will allow laboratory staff to independently and regularly check the correctness of analogue measurements.
sPCR was developed as an integral component of PCR|ONE, an innovative device designed for rapid DNA analysis. In standard PCR machines, relatively slow heat diffusion between the sample and an adjacent large block of alternately heated or cooled material is used to heat and cool the genetic material. In PCR|ONE, infrared radiation is used to heat the sample rapidly. The diffusion cooling mechanism has also been modified: the block used for this purpose is smaller than in conventional instruments and it is maintained at a constant, strictly controlled temperature. As a result of the technical and analytical improvements, the currently being tested prototypes of PCR|ONE are able to complete DNA assays in less than 15 minutes, and the PCR itself takes only 7 minutes. The first PCR|ONE devices are expected to be commercially available in 2-3 years.
"Our DNA testing technique has been patented. However, we want to emphasize the freedom of using it for non-commercial purposes," said Prof. Garstecki.
The study, by Debski PR et al, was published March 22, 2017, in the journal Scientific Reports.
Latest Molecular Diagnostics News
- Genetic Test Could Detect Predisposition to Pancreatic Cancer
- Blood Test Predicts Crohn’s Disease Years Before Symptoms Appear
- DNA Testing of Colorectal Polyps Improves Insight into Hereditary Risks
- CRISPR Discovery Paves Way for Single Diagnostic Test for COVID, Flu and RSV
- Blood-Based Colorectal Cancer Test Demonstrates High Sensitivity
- Genetic Testing Identifies CHIP Patients at Increased Heart Disease Risk After Cancer Treatment
- Advances in Liquid Biopsies Improve Detection of Lung Cancer Mutations
- Blood Test Reveals Multimorbidity Risk in Older Adults
- AI Tools Detect Early-Stage Cancer Using Simple Blood Test
- Sepsis Test Demonstrates Strong Performance in Post-Cardiac Surgery Patients
- Next-Gen Automated ELISA System Elevates Laboratory Performance
- Blood Test Combined with MRI Brain Scans Reveals Two Distinct Multiple Sclerosis Types
- At-Home Blood Tests Accurately Detect Key Alzheimer's Biomarkers
- Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology
- Blood Test Could Predict Death Risk in World’s Most Common Inherited Heart Disease
- Rapid POC Hepatitis C Test Provides Results Within One Hour
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreImmunology
view channel
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read more
New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
Antibiotic resistance is rising worldwide, threatening the effectiveness of treatments for major infectious diseases, including tuberculosis (TB). Resistance to key TB drugs, such as bedaquiline, is of... Read morePathology
view channel
Rapid Stool Test Could Help Pinpoint IBD Diagnosis
Inflammatory bowel disease (IBD) is a chronic condition in which the immune system mistakenly attacks the digestive tract, causing persistent gut inflammation. Diagnosis and disease monitoring often depend... Read more
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Deep Learning–Based Method Improves Cancer Diagnosis
Identifying vascular invasion is critical for determining how aggressive a cancer is, yet doing so reliably can be difficult using standard pathology workflows. Conventional methods require multiple chemical... Read more
ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
Urine drug testing plays a critical role in the emergency department, particularly for patients presenting with suspected overdose or altered mental status. Accurate and timely results can directly influence... Read moreTechnology
view channel
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read more
AI-Generated Sensors Open New Paths for Early Cancer Detection
Cancers are far easier to treat when detected early, yet many tumors remain invisible until they are advanced or have recurred after surgery. Early-stage disease often produces signals that are too weak... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







