New sPCR Technology Runs on Standard Devices
By LabMedica International staff writers Posted on 24 Apr 2017 |

Image: A comparison of analytical PCR procedures (Photo courtesy of Scientific Reports).
Synergistic PCR (sPCR), a new method of DNA analysis developed for use on a new high-speed assay device, can also be carried out on widely available laboratory real-time PCR (qPCR) instruments and does not require calibration.
While developing a record high-speed genetic research tool, Curiosity Diagnostics (CD; Warsaw, Poland), a spinoff company of the Warsaw Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and part of the Scope Fluidics group, has developed the new sPCR method, which combines key advantages of the two currently most used methods.
"The DNA assay technique we propose was born during the development of the innovative PCR|ONE analytical instrument, which can be used to test the genetic code in only 7 minutes. This is more than 10-fold shorter time than is required in classic solutions," said Prof. Piotr Garstecki (IPC PAS, CD).
PCR is used both to detect specific DNA fragments and to estimate the original amount of genetic material. In quantitative PCR (qPCR) measurements are usually carried out using real-time PCR – an analogue technique. Due to the sensitivity of PCR to even single particles of impurities, qPCR requires careful, continuous calibration. Conversely, in digital PCR (dPCR) there is no need to calibrate the device, however, because of the need to conduct a large number of reactions in parallel, the testing equipment is expensive and is not as common in laboratories as the analogue apparatus.
sPCR combines the most important advantages of analogue and digital methods to obtain reliable measurements: it is sufficient to dilute a sample into only a dozen or at most several dozen partitions, and calibration is not required.
"A small number of partitions, characteristic of our technique, are of specific practical significance. It means that to perform the analysis all that is needed is the standard well plate format used in popular analogue PCR devices," said Pawel Debski, an IPC PAS PhD student who developed the sPCR method with Curiosity Diagnostics.
Also due to a small number of sample partitions, the sPCR technique is easier to perform and slightly faster than digital variants. Compared to analogue techniques, however, more reagents are required, and so it will not replace the analogue variant. Nevertheless, sPCR could be a valuable addition, as it requires no calibration and so will allow laboratory staff to independently and regularly check the correctness of analogue measurements.
sPCR was developed as an integral component of PCR|ONE, an innovative device designed for rapid DNA analysis. In standard PCR machines, relatively slow heat diffusion between the sample and an adjacent large block of alternately heated or cooled material is used to heat and cool the genetic material. In PCR|ONE, infrared radiation is used to heat the sample rapidly. The diffusion cooling mechanism has also been modified: the block used for this purpose is smaller than in conventional instruments and it is maintained at a constant, strictly controlled temperature. As a result of the technical and analytical improvements, the currently being tested prototypes of PCR|ONE are able to complete DNA assays in less than 15 minutes, and the PCR itself takes only 7 minutes. The first PCR|ONE devices are expected to be commercially available in 2-3 years.
"Our DNA testing technique has been patented. However, we want to emphasize the freedom of using it for non-commercial purposes," said Prof. Garstecki.
The study, by Debski PR et al, was published March 22, 2017, in the journal Scientific Reports.
While developing a record high-speed genetic research tool, Curiosity Diagnostics (CD; Warsaw, Poland), a spinoff company of the Warsaw Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and part of the Scope Fluidics group, has developed the new sPCR method, which combines key advantages of the two currently most used methods.
"The DNA assay technique we propose was born during the development of the innovative PCR|ONE analytical instrument, which can be used to test the genetic code in only 7 minutes. This is more than 10-fold shorter time than is required in classic solutions," said Prof. Piotr Garstecki (IPC PAS, CD).
PCR is used both to detect specific DNA fragments and to estimate the original amount of genetic material. In quantitative PCR (qPCR) measurements are usually carried out using real-time PCR – an analogue technique. Due to the sensitivity of PCR to even single particles of impurities, qPCR requires careful, continuous calibration. Conversely, in digital PCR (dPCR) there is no need to calibrate the device, however, because of the need to conduct a large number of reactions in parallel, the testing equipment is expensive and is not as common in laboratories as the analogue apparatus.
sPCR combines the most important advantages of analogue and digital methods to obtain reliable measurements: it is sufficient to dilute a sample into only a dozen or at most several dozen partitions, and calibration is not required.
"A small number of partitions, characteristic of our technique, are of specific practical significance. It means that to perform the analysis all that is needed is the standard well plate format used in popular analogue PCR devices," said Pawel Debski, an IPC PAS PhD student who developed the sPCR method with Curiosity Diagnostics.
Also due to a small number of sample partitions, the sPCR technique is easier to perform and slightly faster than digital variants. Compared to analogue techniques, however, more reagents are required, and so it will not replace the analogue variant. Nevertheless, sPCR could be a valuable addition, as it requires no calibration and so will allow laboratory staff to independently and regularly check the correctness of analogue measurements.
sPCR was developed as an integral component of PCR|ONE, an innovative device designed for rapid DNA analysis. In standard PCR machines, relatively slow heat diffusion between the sample and an adjacent large block of alternately heated or cooled material is used to heat and cool the genetic material. In PCR|ONE, infrared radiation is used to heat the sample rapidly. The diffusion cooling mechanism has also been modified: the block used for this purpose is smaller than in conventional instruments and it is maintained at a constant, strictly controlled temperature. As a result of the technical and analytical improvements, the currently being tested prototypes of PCR|ONE are able to complete DNA assays in less than 15 minutes, and the PCR itself takes only 7 minutes. The first PCR|ONE devices are expected to be commercially available in 2-3 years.
"Our DNA testing technique has been patented. However, we want to emphasize the freedom of using it for non-commercial purposes," said Prof. Garstecki.
The study, by Debski PR et al, was published March 22, 2017, in the journal Scientific Reports.
Latest Molecular Diagnostics News
- Newly-Cleared Technology a Game Changer for Diagnosis of Lyme Disease
- Innovative Liquid Biopsy Test Uses RNA to Detect Early-Stage Cancer
- Rapid Tests for Chagas Disease Improves Diagnostic Access
- Simple Blood Test to Predict Alzheimer’s Clinical Progression in Earliest Stages
- Saliva Test Could Identify People Genetically Susceptible to Type 2 Diabetes
- Pioneering Analyzer with Advanced Biochip Technology Sets New Standard in Lab Diagnostics
- RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
- New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
- Injury Molecular Fingerprint Enables Real-Time Diagnostics for On-Site Treatment
- Blood Test Could Predict Likelihood of Breast Cancer Spreading to The Bone
- New Infectious Disease Analytics Platform Speeds Up Clinical Decision-Making at POC
- Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
- Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
- Genomic Testing in NICU Reduces Missed Diagnoses
- New Genetic Test Improves Diabetes Prediction and Classification
- New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
World’s First Clinical Test Predicts Best Rheumatoid Arthritis Treatment
Rheumatoid arthritis (RA) is a chronic condition affecting 1 in 100 people in the UK today, causing the immune system to attack its joints. Unlike osteoarthritis, which is caused by wear and tear, RA can... Read more
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreTechnology
view channel
Low-Cost Biosensing Technology Detects Disease Biomarkers in Minutes
Rapid at-home tests for diseases like COVID-19 have become increasingly popular for their convenience, but they come with a major drawback: they are less sensitive than the tests performed in medical settings.... Read more
AI Tool Could Help Identify Specific Gut Bacterial Targets for Treatment of Diseases
The human body hosts trillions of bacteria, particularly in the gut, which have a significant role in digestion and various other aspects of health. These gut bacteria produce a variety of metabolites... Read moreIndustry
view channel
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more