Technology Developed for Prostate Cancer Diagnosis and Monitoring
|
By LabMedica International staff writers Posted on 06 Apr 2017 |

Image: The LSM510 META confocal microscope (Photo courtesy of Zeiss).
Early diagnosis of prostate cancer and evaluation of appropriate treatment options requires development of effective and high-throughput selective capture technology for exosomes that are positive for the expression of enzyme-biomarker, prostate-specific membrane antigen (PSMA).
Technology under development will provide a non-invasive approach for diagnosing prostate cancer and tracking the disease's progression and it could enable doctors to determine how cancer patients are responding to different treatments without needing to perform invasive biopsies.
Bioengineers at Washington State University fitted a mat of tiny glass springs with specially designed biomarkers that attract the fatty droplets of proteins and RNA that tumor cells shed into body fluids. The droplets, called exosomes, contain genetic information that can be analyzed to determine a cancer's molecular composition, even how far it has advanced. Exosomes are small secreted vesicles that play a key role in intercellular communication and cancer progression.
PSMA is highly enriched in exosomes excreted by PSMA positive prostate cancer cells. Using PSMA positive cells from the well-established prostate cancer cell line (LNCaP), the secreted exosomes were collected and isolated from the culture medium. The tumor-derived exosomes were selectively captured using a novel silica nanostructure support that had been functionalized with the small molecule ligand TG97, a known inhibitor of PSMA enzymatic activity that binds irreversibly in the active site of PSMA. All samples were incubated at room temperature for 20 minutes, followed by analysis using flow cytometry with a FACS Calibur flow cytometer. The samples were imaged using a 25× 9 water immersion objective with a 510 META confocal microscope.
M. Grant Norton, a professor of mechanical and materials engineering and senior author of the study said, “Say you have a urine sample from a patient known to have prostate cancer. You could pass the urine through the device we are in the process of putting together and measure the number of exosomes that are specifically from prostate cancer cells. The physician would propose a treatment plan and the amount of exosomes in a follow-up urine sample would indicate how effective the treatment was.” The study was published online on February 16, 2017, in the Journal of Materials Science.
Technology under development will provide a non-invasive approach for diagnosing prostate cancer and tracking the disease's progression and it could enable doctors to determine how cancer patients are responding to different treatments without needing to perform invasive biopsies.
Bioengineers at Washington State University fitted a mat of tiny glass springs with specially designed biomarkers that attract the fatty droplets of proteins and RNA that tumor cells shed into body fluids. The droplets, called exosomes, contain genetic information that can be analyzed to determine a cancer's molecular composition, even how far it has advanced. Exosomes are small secreted vesicles that play a key role in intercellular communication and cancer progression.
PSMA is highly enriched in exosomes excreted by PSMA positive prostate cancer cells. Using PSMA positive cells from the well-established prostate cancer cell line (LNCaP), the secreted exosomes were collected and isolated from the culture medium. The tumor-derived exosomes were selectively captured using a novel silica nanostructure support that had been functionalized with the small molecule ligand TG97, a known inhibitor of PSMA enzymatic activity that binds irreversibly in the active site of PSMA. All samples were incubated at room temperature for 20 minutes, followed by analysis using flow cytometry with a FACS Calibur flow cytometer. The samples were imaged using a 25× 9 water immersion objective with a 510 META confocal microscope.
M. Grant Norton, a professor of mechanical and materials engineering and senior author of the study said, “Say you have a urine sample from a patient known to have prostate cancer. You could pass the urine through the device we are in the process of putting together and measure the number of exosomes that are specifically from prostate cancer cells. The physician would propose a treatment plan and the amount of exosomes in a follow-up urine sample would indicate how effective the treatment was.” The study was published online on February 16, 2017, in the Journal of Materials Science.
Latest Pathology News
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
- Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
- Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
- Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
- AI Tool Predicts Treatment Success in Rectal Cancer Patients
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
Channels
Clinical Chemistry
view channel
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read more
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read moreMolecular Diagnostics
view channel
Blood Test Could Identify Biomarker Signature of Cerebral Malaria
Malaria remains a major cause of death and long-term disability in many low- and middle-income countries, with around 600,000 deaths reported globally each year. The most severe form, cerebral malaria,... Read more
World’s First Biomarker Blood Test to Assess MS Progression
Multiple sclerosis (MS) disease activity is caused by an abnormal immune response that results in damage to the brain and spinal cord. However, there is a lack of reliable tools to measure or predict MS progression.... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read moreTechnology
view channel
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read more
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more






 Analyzer.jpg)
