New Research Sorting Out Risk Genes for Brain Disorders
|
By LabMedica International staff writers Posted on 09 Mar 2017 |

Image
Using targeted gene sequencing in a large cohort population, researchers have discovered genes associated with higher risk of neurodevelopmental-disorders (NDDs), with some of those genes showing statistical biases for autism. The study provides new information about similarities and differences underlying various NDDs.
To identify and better understand gene-disrupting mutations related to NDDs, a team led by researchers of the laboratory of Evan Eichler, University of Washington Health Sciences/UW Medicine and Howard Hughes Medical Institute, conducted a large, international, multi-institutional study. More than 11,700 affected individuals and nearly 2,800 control subjects underwent targeted DNA sequencing of 208 suspected disease-risk genes, candidate genes that were chosen based on previously published studies. Samples were collected through the Autism Spectrum/Intellectual Disability 15-center network spanning 7 countries and 4 continents. An advantage of this collection is the ability to check back on a large fraction of cases in attempt to relate genetic results to clinical findings.
In their study population, the researchers associated 91 genes with risk of a NDD, including 38 genes not previously suspected. Based on some of the family studies, however, mutations even in two or more of the risk genes may not be necessary or sufficient to cause disease.
Of the 91 genes, 25 were linked with forms of autism without intellectual disability. The scientists also described a gene network that appeared to be related to high-functioning autism. Individuals with this form of autism have average to above average intelligence, but may struggle in learning to talk, interact socially, or manage anxiety and sensory overload. Additional findings suggest that less severe mutations may be behind autism that is not accompanied by intellectual disability. Also notable, although the overall numbers were low, was that several autism risk genes appeared predominantly in males, including some detected exclusively in males who had autism without intellectual impairment.
While observing that some genes were more closely associated with autism and others with intellectual or developmental impairments, the researchers found that most of the genes implicated were mutated in both conditions. This result reinforces previous studies indicating substantial overlap among NDDs in their underlying genetics and observable characteristics.
"Most of these genes are clearly risk factors for neurodevelopmental disorders in a broad sense," the researchers said, "But analysis of both the genetic and subsequent patient follow-up data did single out some genes with a statistical bias towards autism spectrum disorder, rather than an intellectual disability or developmental delay." By combining clinical and genetic data, the researchers observed patterns enabling them to begin to assess how some of the genes might function and how their disruption might lead to specific traits or symptoms.
The researchers also used Drosophila to investigate 21 genes to determine if any of the mutations disrupted a specific form of learning: habituation – growing accustomed to harmless stimuli. Problems with the neuronal mechanisms behind habituation are thought to account for some autism features, such as inability to filter sensory input. The Drosophila studies showed habituation deficits from several of the gene mutations under review, thereby providing additional evidence that they may have a role in cognitive function.
"The scientists are continuing this project and are eager to work with interested families," said University of Washington Prof. Raphael Bernier, clinical director of the Seattle Children's Autism Center. Families can contact the project team at rablab@uw.edu.
The study, by Stessman HAF et al, was published online February 13, 2017, in the journal Nature Genetics.
To identify and better understand gene-disrupting mutations related to NDDs, a team led by researchers of the laboratory of Evan Eichler, University of Washington Health Sciences/UW Medicine and Howard Hughes Medical Institute, conducted a large, international, multi-institutional study. More than 11,700 affected individuals and nearly 2,800 control subjects underwent targeted DNA sequencing of 208 suspected disease-risk genes, candidate genes that were chosen based on previously published studies. Samples were collected through the Autism Spectrum/Intellectual Disability 15-center network spanning 7 countries and 4 continents. An advantage of this collection is the ability to check back on a large fraction of cases in attempt to relate genetic results to clinical findings.
In their study population, the researchers associated 91 genes with risk of a NDD, including 38 genes not previously suspected. Based on some of the family studies, however, mutations even in two or more of the risk genes may not be necessary or sufficient to cause disease.
Of the 91 genes, 25 were linked with forms of autism without intellectual disability. The scientists also described a gene network that appeared to be related to high-functioning autism. Individuals with this form of autism have average to above average intelligence, but may struggle in learning to talk, interact socially, or manage anxiety and sensory overload. Additional findings suggest that less severe mutations may be behind autism that is not accompanied by intellectual disability. Also notable, although the overall numbers were low, was that several autism risk genes appeared predominantly in males, including some detected exclusively in males who had autism without intellectual impairment.
While observing that some genes were more closely associated with autism and others with intellectual or developmental impairments, the researchers found that most of the genes implicated were mutated in both conditions. This result reinforces previous studies indicating substantial overlap among NDDs in their underlying genetics and observable characteristics.
"Most of these genes are clearly risk factors for neurodevelopmental disorders in a broad sense," the researchers said, "But analysis of both the genetic and subsequent patient follow-up data did single out some genes with a statistical bias towards autism spectrum disorder, rather than an intellectual disability or developmental delay." By combining clinical and genetic data, the researchers observed patterns enabling them to begin to assess how some of the genes might function and how their disruption might lead to specific traits or symptoms.
The researchers also used Drosophila to investigate 21 genes to determine if any of the mutations disrupted a specific form of learning: habituation – growing accustomed to harmless stimuli. Problems with the neuronal mechanisms behind habituation are thought to account for some autism features, such as inability to filter sensory input. The Drosophila studies showed habituation deficits from several of the gene mutations under review, thereby providing additional evidence that they may have a role in cognitive function.
"The scientists are continuing this project and are eager to work with interested families," said University of Washington Prof. Raphael Bernier, clinical director of the Seattle Children's Autism Center. Families can contact the project team at rablab@uw.edu.
The study, by Stessman HAF et al, was published online February 13, 2017, in the journal Nature Genetics.
Latest Molecular Diagnostics News
- New Biomarker Panel to Improve Heart Failure Diagnosis in Women
- Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
- Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes
- High-Sensitivity Troponin I Assay Aids in Diagnosis of Myocardial Infarction
- Fast Low-Cost Alzheimer’s Tests Could Detect Disease in Early and Silent Stages
- Further Investigation of FISH-Negative Tests for Renal Cell Carcinoma Improves Diagnostic Accuracy
- First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
- Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
- New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection

- Urine Test Detects Early Stage Pancreatic Cancer
- Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
- Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients
- Blood Test Guides Post-Surgical Immunotherapy for Muscle-Invasive Bladder Cancer
- Mitochondrial DNA Mutations from Kidney Stressors Could Predict Future Organ Decline
- Blood Test Could Predict Bariatric Surgery Outcomes in Teenagers
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read more
3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
Standard laboratory tests often fail to detect complex DNA rearrangements that underlie many genetic diseases. To bridge this diagnostic gap, researchers have developed a 3D chromosome mapping method that... Read more
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








