Immunoassay Device Based on Acoustic Vortex Nanoparticle Enrichment
|
By LabMedica International staff writers Posted on 08 Feb 2017 |

Image: A sample of 500 nanometer particles in solution. In the top image, the acoustic whirlpool device was turned off. The bottom image shows that when the device was turned on, the nanoparticles were concentrated to the point of becoming visible as a dark line down the center of the chamber (Photo courtesy of Duke University).
An inexpensive acoustic transducer is the key to a novel immunoassay that may eventually be combined with a smartphone camera to form a platform for the rapid detection of diagnostic proteins in blood, urine, or saliva samples.
Investigators at Duke University developed an acoustic-fluidic chip capable of generating single vortex acoustic streaming inside a glass capillary through using low-power acoustic waves (only five volts was required). The single vortex acoustic streaming that was generated, in conjunction with the acoustic radiation force, was able to enrich submicrometer- and nanometer-sized particles in a small volume. Numerical simulations were used to clarify the mechanism of the single vortex formation and were verified experimentally, demonstrating the focusing of silica and polystyrene particles ranging in diameter from 80 to 500 nanometers.
In a proof-of-principle study, the acoustic-fluidic chip was used to perform an immunoassay in which nanoparticles that captured fluorescently labeled biomarkers were concentrated in a long, thin glass vial to enhance the emitted signal.
“Diagnosis impacts about 70% of healthcare decisions,” said senior author Dr. Tony Huang, professor of mechanical engineering and materials science at Duke University. “If we can improve the quality of diagnostics while reducing its costs, then we can tremendously improve the entire healthcare system. My goal is to create a small diagnostic device about the size of a cell phone that can autonomously separate biomarkers from samples. With this vortex technology, the biomarkers could then be concentrated enough to see with a simple camera like the ones found in today’s cellular phones.”
Investigators at Duke University developed an acoustic-fluidic chip capable of generating single vortex acoustic streaming inside a glass capillary through using low-power acoustic waves (only five volts was required). The single vortex acoustic streaming that was generated, in conjunction with the acoustic radiation force, was able to enrich submicrometer- and nanometer-sized particles in a small volume. Numerical simulations were used to clarify the mechanism of the single vortex formation and were verified experimentally, demonstrating the focusing of silica and polystyrene particles ranging in diameter from 80 to 500 nanometers.
In a proof-of-principle study, the acoustic-fluidic chip was used to perform an immunoassay in which nanoparticles that captured fluorescently labeled biomarkers were concentrated in a long, thin glass vial to enhance the emitted signal.
“Diagnosis impacts about 70% of healthcare decisions,” said senior author Dr. Tony Huang, professor of mechanical engineering and materials science at Duke University. “If we can improve the quality of diagnostics while reducing its costs, then we can tremendously improve the entire healthcare system. My goal is to create a small diagnostic device about the size of a cell phone that can autonomously separate biomarkers from samples. With this vortex technology, the biomarkers could then be concentrated enough to see with a simple camera like the ones found in today’s cellular phones.”
Latest Technology News
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Channels
Clinical Chemistry
view channel
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read more
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read moreMolecular Diagnostics
view channel
Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more
Sample Prep Instrument to Empower Decentralized PCR Testing for Tuberculosis
Tuberculosis remains the deadliest infectious disease worldwide despite being both treatable and curable when diagnosed early. A major barrier to timely diagnosis is that PCR-based TB testing is still... Read more
Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis
Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more
World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more






 Analyzer.jpg)
