Immunoassay Device Based on Acoustic Vortex Nanoparticle Enrichment
|
By LabMedica International staff writers Posted on 08 Feb 2017 |

Image: A sample of 500 nanometer particles in solution. In the top image, the acoustic whirlpool device was turned off. The bottom image shows that when the device was turned on, the nanoparticles were concentrated to the point of becoming visible as a dark line down the center of the chamber (Photo courtesy of Duke University).
An inexpensive acoustic transducer is the key to a novel immunoassay that may eventually be combined with a smartphone camera to form a platform for the rapid detection of diagnostic proteins in blood, urine, or saliva samples.
Investigators at Duke University developed an acoustic-fluidic chip capable of generating single vortex acoustic streaming inside a glass capillary through using low-power acoustic waves (only five volts was required). The single vortex acoustic streaming that was generated, in conjunction with the acoustic radiation force, was able to enrich submicrometer- and nanometer-sized particles in a small volume. Numerical simulations were used to clarify the mechanism of the single vortex formation and were verified experimentally, demonstrating the focusing of silica and polystyrene particles ranging in diameter from 80 to 500 nanometers.
In a proof-of-principle study, the acoustic-fluidic chip was used to perform an immunoassay in which nanoparticles that captured fluorescently labeled biomarkers were concentrated in a long, thin glass vial to enhance the emitted signal.
“Diagnosis impacts about 70% of healthcare decisions,” said senior author Dr. Tony Huang, professor of mechanical engineering and materials science at Duke University. “If we can improve the quality of diagnostics while reducing its costs, then we can tremendously improve the entire healthcare system. My goal is to create a small diagnostic device about the size of a cell phone that can autonomously separate biomarkers from samples. With this vortex technology, the biomarkers could then be concentrated enough to see with a simple camera like the ones found in today’s cellular phones.”
Investigators at Duke University developed an acoustic-fluidic chip capable of generating single vortex acoustic streaming inside a glass capillary through using low-power acoustic waves (only five volts was required). The single vortex acoustic streaming that was generated, in conjunction with the acoustic radiation force, was able to enrich submicrometer- and nanometer-sized particles in a small volume. Numerical simulations were used to clarify the mechanism of the single vortex formation and were verified experimentally, demonstrating the focusing of silica and polystyrene particles ranging in diameter from 80 to 500 nanometers.
In a proof-of-principle study, the acoustic-fluidic chip was used to perform an immunoassay in which nanoparticles that captured fluorescently labeled biomarkers were concentrated in a long, thin glass vial to enhance the emitted signal.
“Diagnosis impacts about 70% of healthcare decisions,” said senior author Dr. Tony Huang, professor of mechanical engineering and materials science at Duke University. “If we can improve the quality of diagnostics while reducing its costs, then we can tremendously improve the entire healthcare system. My goal is to create a small diagnostic device about the size of a cell phone that can autonomously separate biomarkers from samples. With this vortex technology, the biomarkers could then be concentrated enough to see with a simple camera like the ones found in today’s cellular phones.”
Latest Technology News
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Blood Metabolite Signature Test Better Predicts Type 2 Diabetes Risk
Type 2 diabetes is rising worldwide and now accounts for more than 90% of all diabetes cases, driven by impaired insulin response and long-term metabolic dysfunction. The disease often develops silently... Read more
Genetic Test Could Detect Predisposition to Pancreatic Cancer
Pancreatic ductal adenocarcinoma is one of the deadliest cancers, largely because it is usually diagnosed at an advanced stage when treatment options are limited. The lack of effective population screening... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreImmunology
view channel
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read more
New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
Antibiotic resistance is rising worldwide, threatening the effectiveness of treatments for major infectious diseases, including tuberculosis (TB). Resistance to key TB drugs, such as bedaquiline, is of... Read morePathology
view channel
Intraoperative Tumor Histology to Improve Cancer Surgeries
Surgical removal of cancer remains the first-line treatment for many tumors, but ensuring that all cancerous tissue is removed while preserving healthy tissue is a major challenge. Surgeons currently rely... Read more
Rapid Stool Test Could Help Pinpoint IBD Diagnosis
Inflammatory bowel disease (IBD) is a chronic condition in which the immune system mistakenly attacks the digestive tract, causing persistent gut inflammation. Diagnosis and disease monitoring often depend... Read more
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







