New Technology Could Help Diagnose Sepsis in Hours
By LabMedica International staff writers Posted on 08 Nov 2016 |

Image: A new microfluidics chip being developed for a blood test to rapidly diagnose sepsis would enable doctors to intervene sooner and as necessary, as well as to monitor treatment progress (Photo courtesy of Pappas Lab / Texas Tech University).
Researchers have developed a microfluidics chip that detected mock-sepsis conditions within a few hours, instead of at least two days by currently used methods. As sepsis left untreated can be fatal in as little as two days, a rapid blood test would provide medical professionals with a critical window of time in which to begin early antibiotics treatment of diagnosed patients.
“Normally when you detect sepsis, you do it through bacterial culture; that takes two days on the short end to 15 days on the long end. Most people die of sepsis at two days. The detection currently is on the exact same time scale as mortality, so we’re trying to speed that up,” said Dimitri Pappas, associate professor of chemistry at Texas Tech University (Lubbock, TX, USA), “Instead of the bacteria, we’re looking at the body’s immune response to those bacteria, because that’s what you really care about: the bacteria cause the infection, but it’s the body’s response that causes sepsis.” It begins with a systemic inflammatory response then progresses into sepsis and eventually septic shock, in which blood pressure plummets and organs fail.
“In the elderly, in people who are immune-compromised – people who have had surgeries, for example, or burns or they’re already fighting off infection – and in children as well, you see a runaway immune response where the body’s act of saving itself can actually be lethal,” said Prof. Pappas. When not fatal, sepsis can result in amputation of a limb or prolonged hospitalization.
Sepsis is suspected by a patient’s abnormal body temperature and rapid heart and breathing rates. “Those are all incredibly crude measurements,” said Prof. Pappas, “It leads to a lot of false positives.” Because doctors know the bacterial culture likely will take longer than a septic patient’s life span, they often order treatment immediately. “The way they treat sepsis right now is through a massive antibiotic administration,” said Prof. Pappas “That’s good, actually, but if you do it prophylactically and when it’s not needed, you’re basically helping create drug-resistant bacteria. So there’s a need to detect sepsis and to treat it but not to over treat it.”
To successfully treat septic patients, doctors need two critical pieces of information: the microorganism causing the infection and whether it can be eradicated by antibiotics. “Waiting for that information over several days is one of the main problems and reasons for the devastating outcomes,” said Dr. John Griswold, professor and chair emeritus, Department of Surgery, TTU’s Health Sciences Center, “Dr. Pappas has developed a test that should give us at least the indication of bacterial invasion within a matter of hours as opposed to days. The sooner we have an indication of microorganism invasion, the sooner we are on the path to successful treatment of these very sick patients.” Prof. Griswold added that sepsis is considered one of the most costly diseases in healthcare.
Prof. Pappas and graduate student Ye Zhang recently filed a provisional patent for a microfluidics chip that can speed up detection. “We can take a blood sample, introduce it into this chip and capture one cell type or move fluids around and add chemicals to dye the cells certain colors and do diagnostic measurements,” said Prof. Pappas.
Using their chip, a sepsis diagnosis can be confirmed in just four hours. “That rapid detection will let doctors intervene sooner and intervene when necessary, but it also allows them not just to detect it but to follow up treatment,” said Prof. Pappas, “you can follow and retest them over time to make sure the body’s response is returning to normal.”
Another advantage is that the chip requires less than a drop of blood per test. “It’s so minimal we could do this multiple times throughout the course of the treatment of the patient. If they’re not septic at hour zero, but they still look septic by other methods, we could test them in six hours and see if they’ve progressed or not,” said Prof. Pappas.
The chips are designed to detect certain white blood cells activated by the immune system to fight the infection. To this point, all testing has been done with using transformed stem cells. “We have stem cells that we transform into white blood cells, then we trick them into thinking there’s an infection. We add those infection-response blood cells to human blood in the concentrations we want and the timeframe we want,” said Prof. Pappas. The blood is then tested to see if the chip registers it as septic. “That allows us to refine the technique to make sure it’ll work, because human samples are far more variable,” he said, “Before moving to humans, we had to show it’ll work in the first place.”
“Ultimately, this type of work – for it to be successful – has to be commercialized,” he said. “It has to be out there in the hands of physicians.” The next step is to test the chip with patient blood. In collaboration with Dr. Griswold, Dr. Pappas will now begin enrolling patients.
Related Links:
Texas Tech University
“Normally when you detect sepsis, you do it through bacterial culture; that takes two days on the short end to 15 days on the long end. Most people die of sepsis at two days. The detection currently is on the exact same time scale as mortality, so we’re trying to speed that up,” said Dimitri Pappas, associate professor of chemistry at Texas Tech University (Lubbock, TX, USA), “Instead of the bacteria, we’re looking at the body’s immune response to those bacteria, because that’s what you really care about: the bacteria cause the infection, but it’s the body’s response that causes sepsis.” It begins with a systemic inflammatory response then progresses into sepsis and eventually septic shock, in which blood pressure plummets and organs fail.
“In the elderly, in people who are immune-compromised – people who have had surgeries, for example, or burns or they’re already fighting off infection – and in children as well, you see a runaway immune response where the body’s act of saving itself can actually be lethal,” said Prof. Pappas. When not fatal, sepsis can result in amputation of a limb or prolonged hospitalization.
Sepsis is suspected by a patient’s abnormal body temperature and rapid heart and breathing rates. “Those are all incredibly crude measurements,” said Prof. Pappas, “It leads to a lot of false positives.” Because doctors know the bacterial culture likely will take longer than a septic patient’s life span, they often order treatment immediately. “The way they treat sepsis right now is through a massive antibiotic administration,” said Prof. Pappas “That’s good, actually, but if you do it prophylactically and when it’s not needed, you’re basically helping create drug-resistant bacteria. So there’s a need to detect sepsis and to treat it but not to over treat it.”
To successfully treat septic patients, doctors need two critical pieces of information: the microorganism causing the infection and whether it can be eradicated by antibiotics. “Waiting for that information over several days is one of the main problems and reasons for the devastating outcomes,” said Dr. John Griswold, professor and chair emeritus, Department of Surgery, TTU’s Health Sciences Center, “Dr. Pappas has developed a test that should give us at least the indication of bacterial invasion within a matter of hours as opposed to days. The sooner we have an indication of microorganism invasion, the sooner we are on the path to successful treatment of these very sick patients.” Prof. Griswold added that sepsis is considered one of the most costly diseases in healthcare.
Prof. Pappas and graduate student Ye Zhang recently filed a provisional patent for a microfluidics chip that can speed up detection. “We can take a blood sample, introduce it into this chip and capture one cell type or move fluids around and add chemicals to dye the cells certain colors and do diagnostic measurements,” said Prof. Pappas.
Using their chip, a sepsis diagnosis can be confirmed in just four hours. “That rapid detection will let doctors intervene sooner and intervene when necessary, but it also allows them not just to detect it but to follow up treatment,” said Prof. Pappas, “you can follow and retest them over time to make sure the body’s response is returning to normal.”
Another advantage is that the chip requires less than a drop of blood per test. “It’s so minimal we could do this multiple times throughout the course of the treatment of the patient. If they’re not septic at hour zero, but they still look septic by other methods, we could test them in six hours and see if they’ve progressed or not,” said Prof. Pappas.
The chips are designed to detect certain white blood cells activated by the immune system to fight the infection. To this point, all testing has been done with using transformed stem cells. “We have stem cells that we transform into white blood cells, then we trick them into thinking there’s an infection. We add those infection-response blood cells to human blood in the concentrations we want and the timeframe we want,” said Prof. Pappas. The blood is then tested to see if the chip registers it as septic. “That allows us to refine the technique to make sure it’ll work, because human samples are far more variable,” he said, “Before moving to humans, we had to show it’ll work in the first place.”
“Ultimately, this type of work – for it to be successful – has to be commercialized,” he said. “It has to be out there in the hands of physicians.” The next step is to test the chip with patient blood. In collaboration with Dr. Griswold, Dr. Pappas will now begin enrolling patients.
Related Links:
Texas Tech University
Latest Technology News
- Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
- New Miniature Device to Transform Testing of Blood Cancer Treatments
- Biosensing Advancement to Enable Early Detection of Disease Biomarkers at POC
- New POC Biosensing Technology Improves Detection of Molecular Biomarkers
- Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
- AI-Assisted Non-DNA Based Test Identifies Viral Infections in Minutes
- AI Method Predicts Overall Survival Rate of Prostate Cancer Patients
- Breath Test to Enable Early Detection of Breast Cancer
- First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels
- Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more
New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
Polysialic acid is a unique acidic glycan predominantly found in brain regions associated with memory and emotion, but it is also present in the bloodstream. Research has shown that blood levels of polysialic... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreTechnology
view channel
Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
Many people around the world still lack access to affordable, easy-to-use diagnostics for diseases like cancer, HIV, and influenza. Conventional sensors, while accurate, often rely on expensive equipment... Read more
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read moreIndustry
view channel
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more