New Technology Could Help Diagnose Sepsis in Hours
|
By LabMedica International staff writers Posted on 08 Nov 2016 |

Image: A new microfluidics chip being developed for a blood test to rapidly diagnose sepsis would enable doctors to intervene sooner and as necessary, as well as to monitor treatment progress (Photo courtesy of Pappas Lab / Texas Tech University).
Researchers have developed a microfluidics chip that detected mock-sepsis conditions within a few hours, instead of at least two days by currently used methods. As sepsis left untreated can be fatal in as little as two days, a rapid blood test would provide medical professionals with a critical window of time in which to begin early antibiotics treatment of diagnosed patients.
“Normally when you detect sepsis, you do it through bacterial culture; that takes two days on the short end to 15 days on the long end. Most people die of sepsis at two days. The detection currently is on the exact same time scale as mortality, so we’re trying to speed that up,” said Dimitri Pappas, associate professor of chemistry at Texas Tech University (Lubbock, TX, USA), “Instead of the bacteria, we’re looking at the body’s immune response to those bacteria, because that’s what you really care about: the bacteria cause the infection, but it’s the body’s response that causes sepsis.” It begins with a systemic inflammatory response then progresses into sepsis and eventually septic shock, in which blood pressure plummets and organs fail.
“In the elderly, in people who are immune-compromised – people who have had surgeries, for example, or burns or they’re already fighting off infection – and in children as well, you see a runaway immune response where the body’s act of saving itself can actually be lethal,” said Prof. Pappas. When not fatal, sepsis can result in amputation of a limb or prolonged hospitalization.
Sepsis is suspected by a patient’s abnormal body temperature and rapid heart and breathing rates. “Those are all incredibly crude measurements,” said Prof. Pappas, “It leads to a lot of false positives.” Because doctors know the bacterial culture likely will take longer than a septic patient’s life span, they often order treatment immediately. “The way they treat sepsis right now is through a massive antibiotic administration,” said Prof. Pappas “That’s good, actually, but if you do it prophylactically and when it’s not needed, you’re basically helping create drug-resistant bacteria. So there’s a need to detect sepsis and to treat it but not to over treat it.”
To successfully treat septic patients, doctors need two critical pieces of information: the microorganism causing the infection and whether it can be eradicated by antibiotics. “Waiting for that information over several days is one of the main problems and reasons for the devastating outcomes,” said Dr. John Griswold, professor and chair emeritus, Department of Surgery, TTU’s Health Sciences Center, “Dr. Pappas has developed a test that should give us at least the indication of bacterial invasion within a matter of hours as opposed to days. The sooner we have an indication of microorganism invasion, the sooner we are on the path to successful treatment of these very sick patients.” Prof. Griswold added that sepsis is considered one of the most costly diseases in healthcare.
Prof. Pappas and graduate student Ye Zhang recently filed a provisional patent for a microfluidics chip that can speed up detection. “We can take a blood sample, introduce it into this chip and capture one cell type or move fluids around and add chemicals to dye the cells certain colors and do diagnostic measurements,” said Prof. Pappas.
Using their chip, a sepsis diagnosis can be confirmed in just four hours. “That rapid detection will let doctors intervene sooner and intervene when necessary, but it also allows them not just to detect it but to follow up treatment,” said Prof. Pappas, “you can follow and retest them over time to make sure the body’s response is returning to normal.”
Another advantage is that the chip requires less than a drop of blood per test. “It’s so minimal we could do this multiple times throughout the course of the treatment of the patient. If they’re not septic at hour zero, but they still look septic by other methods, we could test them in six hours and see if they’ve progressed or not,” said Prof. Pappas.
The chips are designed to detect certain white blood cells activated by the immune system to fight the infection. To this point, all testing has been done with using transformed stem cells. “We have stem cells that we transform into white blood cells, then we trick them into thinking there’s an infection. We add those infection-response blood cells to human blood in the concentrations we want and the timeframe we want,” said Prof. Pappas. The blood is then tested to see if the chip registers it as septic. “That allows us to refine the technique to make sure it’ll work, because human samples are far more variable,” he said, “Before moving to humans, we had to show it’ll work in the first place.”
“Ultimately, this type of work – for it to be successful – has to be commercialized,” he said. “It has to be out there in the hands of physicians.” The next step is to test the chip with patient blood. In collaboration with Dr. Griswold, Dr. Pappas will now begin enrolling patients.
Related Links:
Texas Tech University
“Normally when you detect sepsis, you do it through bacterial culture; that takes two days on the short end to 15 days on the long end. Most people die of sepsis at two days. The detection currently is on the exact same time scale as mortality, so we’re trying to speed that up,” said Dimitri Pappas, associate professor of chemistry at Texas Tech University (Lubbock, TX, USA), “Instead of the bacteria, we’re looking at the body’s immune response to those bacteria, because that’s what you really care about: the bacteria cause the infection, but it’s the body’s response that causes sepsis.” It begins with a systemic inflammatory response then progresses into sepsis and eventually septic shock, in which blood pressure plummets and organs fail.
“In the elderly, in people who are immune-compromised – people who have had surgeries, for example, or burns or they’re already fighting off infection – and in children as well, you see a runaway immune response where the body’s act of saving itself can actually be lethal,” said Prof. Pappas. When not fatal, sepsis can result in amputation of a limb or prolonged hospitalization.
Sepsis is suspected by a patient’s abnormal body temperature and rapid heart and breathing rates. “Those are all incredibly crude measurements,” said Prof. Pappas, “It leads to a lot of false positives.” Because doctors know the bacterial culture likely will take longer than a septic patient’s life span, they often order treatment immediately. “The way they treat sepsis right now is through a massive antibiotic administration,” said Prof. Pappas “That’s good, actually, but if you do it prophylactically and when it’s not needed, you’re basically helping create drug-resistant bacteria. So there’s a need to detect sepsis and to treat it but not to over treat it.”
To successfully treat septic patients, doctors need two critical pieces of information: the microorganism causing the infection and whether it can be eradicated by antibiotics. “Waiting for that information over several days is one of the main problems and reasons for the devastating outcomes,” said Dr. John Griswold, professor and chair emeritus, Department of Surgery, TTU’s Health Sciences Center, “Dr. Pappas has developed a test that should give us at least the indication of bacterial invasion within a matter of hours as opposed to days. The sooner we have an indication of microorganism invasion, the sooner we are on the path to successful treatment of these very sick patients.” Prof. Griswold added that sepsis is considered one of the most costly diseases in healthcare.
Prof. Pappas and graduate student Ye Zhang recently filed a provisional patent for a microfluidics chip that can speed up detection. “We can take a blood sample, introduce it into this chip and capture one cell type or move fluids around and add chemicals to dye the cells certain colors and do diagnostic measurements,” said Prof. Pappas.
Using their chip, a sepsis diagnosis can be confirmed in just four hours. “That rapid detection will let doctors intervene sooner and intervene when necessary, but it also allows them not just to detect it but to follow up treatment,” said Prof. Pappas, “you can follow and retest them over time to make sure the body’s response is returning to normal.”
Another advantage is that the chip requires less than a drop of blood per test. “It’s so minimal we could do this multiple times throughout the course of the treatment of the patient. If they’re not septic at hour zero, but they still look septic by other methods, we could test them in six hours and see if they’ve progressed or not,” said Prof. Pappas.
The chips are designed to detect certain white blood cells activated by the immune system to fight the infection. To this point, all testing has been done with using transformed stem cells. “We have stem cells that we transform into white blood cells, then we trick them into thinking there’s an infection. We add those infection-response blood cells to human blood in the concentrations we want and the timeframe we want,” said Prof. Pappas. The blood is then tested to see if the chip registers it as septic. “That allows us to refine the technique to make sure it’ll work, because human samples are far more variable,” he said, “Before moving to humans, we had to show it’ll work in the first place.”
“Ultimately, this type of work – for it to be successful – has to be commercialized,” he said. “It has to be out there in the hands of physicians.” The next step is to test the chip with patient blood. In collaboration with Dr. Griswold, Dr. Pappas will now begin enrolling patients.
Related Links:
Texas Tech University
Latest Technology News
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreMolecular Diagnostics
view channel
New DNA Test Tracks Spread of Parasitic Disease from Single Sample
Leishmaniasis remains a major challenge for veterinary and public health systems, largely because its transmission involves multiple sand fly species and a wide range of animal hosts. Understanding these... Read more
Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
Diabetic kidney disease often develops silently, and many patients are diagnosed only after irreversible damage has occurred. Late diagnosis frequently leads to complications affecting the kidneys, heart,... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








