Changes in Eye Tissue May Enable Early Detection of Brain Diseases
By LabMedica International staff writers Posted on 11 Oct 2016 |

Image: An experiment examining retina tissue for mHtt deposition in GFAP-ir astrocytes in R6/2 mouse model of Huntington’s Disease. Green: glial fibrillary acidic protein (GFAP); Red: mutant huntingtin protein (mHtt). (A) A low magnification picture illustrates GFAP-ir astrocytes and mHtt deposits from the retinal wholemount of 12-week-old R6/2 (Huntington’s disease model) mouse. Scale bar = 50 µm. (B) A detailed confocal analysis of GFAP positivity, mHtt immunoreactivity, and DAPI counterstain (blue) revealed no colocalization of GFAP and mHtt. Scale bar = 20 µm (Image courtesy of PLoS One).
Research with mouse models has shown that at least some diseases of the central nervous system (CNS) manifest as pathological changes in the retina of the eye and that these changes may be detected earlier than brain changes. The findings suggest that eye examination could be used for minimally invasive screening for these diseases.
Retina tissue can be considered an integral part of the central nervous system (CNS). During fetal development, it matures from part of the brain and its innervation closely resembles that of the brain. Retinal structure and function can be readily examined with noninvasive or minimally invasive methods, whereas direct brain examination has numerous limitations. If, at least for some brain diseases, the health status of the brain could be indirectly assessed through the eyes, diagnostic screening could become more efficient.
In his PhD project at the University of Eastern Finland at Kuopio (Kuopio, Finland), Dr. Henri Leinonen and colleagues investigated functional abnormalities of the retina using mouse models of human CNS diseases. Electroretinography (ERG) and visual evoked potentials (VEP) were chosen as research techniques, since similar methodology can be applied in both laboratory animals and humans. ERG can precisely track the function of retina using corneal or skin electrodes, whereas VEP measures the function of visual cortex.
These methods were used to test different attributes of vision in 3 distinct genetically engineered mouse models of human CNS diseases. Also, basic life science methods were used to test the correlation between functional abnormalities and the anatomical status of the retina.
Day and color vision -associated retinal dysfunction was found in a mouse model of Huntington´s disease (HD) while the mouse was presymptomatic. Retinal structure remained relatively normal, even in an advanced disease state, although aggregation of toxic mutated huntingtin-protein was widespread in the diseased mouse retina. Although the retinopathy in mice is exaggerated compared to human HD patients, the finding is partly in line with patient data showing impaired color vision but no clear-cut anatomical retinopathy.
In a mouse model of Alzheimer´s disease (AD), the researchers observed abnormality in night vision -associated retinal function. Specifically, rod-mediated inner retinal responses to dim light flashes were faster in diseased mice than in their wild-type controls. The observation may be explained by impaired cholinergic neurotransmission that is also partly causative for the deterioration of memory in AD.
In a mouse model of late infantile neuronal ceroid lipofuscinosis (NCL), a pediatric neurological disease, the researchers described retinal degenerative changes that mimic the characteristic pathology of age-related macular degeneration (AMD). These included impaired function of retinal pigment epithelium and subsequent blindness due to photoreceptor atrophy and death. It has been postulated that the retinal degeneration in human patients progresses similarly.
Adding to the growing body of evidence, the results showed that functional changes of the retina occur in mouse models of three human CNS diseases whose phenotype, age of onset, and pathological mechanism clearly differ from each other. Visual impairment was the fastest progressive symptom in two models tested.
The findings support the idea of eye examinations as potential screening tools for CNS diseases. Development of efficient, safe, and economic screening is imperative since the diagnosis of these diseases is often obtained only in the advanced disease state, when as such satisfactory remedies are poorly effective. Since eye and vision research can be conducted noninvasively, advancement of trials from the preclinical to the clinical phase could be relatively fast.
Dr. Leinonen’s doctoral dissertation, entitled “Electrophysiology of visual pathways as a screening tool for neurodegenerative diseases: evidence from mouse disease models”, is available for download. The findings were published in PLoS One, the Journal of Alzheimer’s Disease, and most recently in the journal Human Molecular Genetics.
Related Links:
University of Eastern Finland
Retina tissue can be considered an integral part of the central nervous system (CNS). During fetal development, it matures from part of the brain and its innervation closely resembles that of the brain. Retinal structure and function can be readily examined with noninvasive or minimally invasive methods, whereas direct brain examination has numerous limitations. If, at least for some brain diseases, the health status of the brain could be indirectly assessed through the eyes, diagnostic screening could become more efficient.
In his PhD project at the University of Eastern Finland at Kuopio (Kuopio, Finland), Dr. Henri Leinonen and colleagues investigated functional abnormalities of the retina using mouse models of human CNS diseases. Electroretinography (ERG) and visual evoked potentials (VEP) were chosen as research techniques, since similar methodology can be applied in both laboratory animals and humans. ERG can precisely track the function of retina using corneal or skin electrodes, whereas VEP measures the function of visual cortex.
These methods were used to test different attributes of vision in 3 distinct genetically engineered mouse models of human CNS diseases. Also, basic life science methods were used to test the correlation between functional abnormalities and the anatomical status of the retina.
Day and color vision -associated retinal dysfunction was found in a mouse model of Huntington´s disease (HD) while the mouse was presymptomatic. Retinal structure remained relatively normal, even in an advanced disease state, although aggregation of toxic mutated huntingtin-protein was widespread in the diseased mouse retina. Although the retinopathy in mice is exaggerated compared to human HD patients, the finding is partly in line with patient data showing impaired color vision but no clear-cut anatomical retinopathy.
In a mouse model of Alzheimer´s disease (AD), the researchers observed abnormality in night vision -associated retinal function. Specifically, rod-mediated inner retinal responses to dim light flashes were faster in diseased mice than in their wild-type controls. The observation may be explained by impaired cholinergic neurotransmission that is also partly causative for the deterioration of memory in AD.
In a mouse model of late infantile neuronal ceroid lipofuscinosis (NCL), a pediatric neurological disease, the researchers described retinal degenerative changes that mimic the characteristic pathology of age-related macular degeneration (AMD). These included impaired function of retinal pigment epithelium and subsequent blindness due to photoreceptor atrophy and death. It has been postulated that the retinal degeneration in human patients progresses similarly.
Adding to the growing body of evidence, the results showed that functional changes of the retina occur in mouse models of three human CNS diseases whose phenotype, age of onset, and pathological mechanism clearly differ from each other. Visual impairment was the fastest progressive symptom in two models tested.
The findings support the idea of eye examinations as potential screening tools for CNS diseases. Development of efficient, safe, and economic screening is imperative since the diagnosis of these diseases is often obtained only in the advanced disease state, when as such satisfactory remedies are poorly effective. Since eye and vision research can be conducted noninvasively, advancement of trials from the preclinical to the clinical phase could be relatively fast.
Dr. Leinonen’s doctoral dissertation, entitled “Electrophysiology of visual pathways as a screening tool for neurodegenerative diseases: evidence from mouse disease models”, is available for download. The findings were published in PLoS One, the Journal of Alzheimer’s Disease, and most recently in the journal Human Molecular Genetics.
Related Links:
University of Eastern Finland
Latest Pathology News
- ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours
- Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
- Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
- Mobile-Compatible AI-Powered System to Revolutionize Malaria Diagnosis
- Compact AI-Powered Microscope Enables Rapid Cost-Effective Cancer Scoring
- New Method Enables Precise Detection of Nanoplastics in Body
- AI-Powered Tool Improves Cancer Tissue Analysis
- AI Platform Uses 3D Visualization to Reveal Disease Biomarkers in Multiomics Data
- AI Tool Detects Early Signs of Blood Mutations Linked to Cancer and Heart Disease
- Multi-Omics AI Model Improves Preterm Birth Prediction Accuracy
- AI-Based Approach Diagnoses Colorectal Cancer from Gut Microbiota
- Topical Fluorescent Imaging Technique Detects Basal Cell Carcinoma
- AI Detects Early Prostate Cancer Missed by Pathologists
- AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples
- New Technology to Accelerate Diagnosis of Diabetic Kidney Disease
- Skin-Based Biomarkers to Enable Early Diagnosis of Amyotrophic Lateral Sclerosis
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
New DNA Methylation-Based Method Predicts Cancer Progression
Cancer often develops silently for years before diagnosis, making it difficult to trace its origins and predict its progression. Traditional approaches to studying cancer evolution have lacked the precision... Read more
Urine Test Could Predict Outcome of Cartilage Transplant Surgery
Cartilage transplant surgery provides an alternative to artificial joint replacements by using donor tissue to restore knee function. While many patients benefit, outcomes can vary, leaving uncertainty... Read more
2-Hour Cancer Blood Test to Transform Tumor Detection
Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more
Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
Alzheimer’s disease and other neurodegenerative disorders remain difficult to diagnose and monitor accurately due to limitations in existing biomarkers. Traditional tau and phosphorylated tau measurements... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more