Immune Cells Adapt Inefficiently in Patients with Uncontrolled HIV
|
By LabMedica International staff writers Posted on 28 Mar 2016 |
Antibodies derived from a type of immune cell found in unusually high numbers in human immunodeficiency virus (HIV)-infected individuals with chronically uncontrolled virus levels are less effective at neutralizing HIV than antibodies derived from a different type of immune cell more common in people without HIV.
HIV infection leads to numerous immunologic abnormalities, especially in individuals whose viremia is not well controlled, either naturally or by antiretroviral therapy (ART). B cells are not direct targets for HIV replication; however, direct and indirect consequences of viral replication such as immune activation and lymphopenia lead to numerous B cell abnormalities over the course of infection.
Scientists at the US National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) and their colleagues collected serum and/or leukapheresis products from 25 chronically infected HIV-viremic individuals. The donors were not taking antiretroviral drugs to suppress the level of HIV in their blood, or viral load, at the time of the study. Like many individuals with persistent levels of HIV, the donors' blood samples had abnormally high numbers of immune cells called tissue-like memory (TLM) B cells, compared with resting memory (RM) B cells, which account for the majority of memory B cells in people without HIV.
Peripheral blood mononuclear cells (PBMCs) were obtained by density-gradient centrifugation. Mature CD10-B cells were isolated from PBMCs by negative magnetic bead–based selection using a B cell enrichment cocktail that was supplemented with tetrameric anti-CD10 monoclonal antibodies (mAb) (STEMCELL Technologies; Vancouver, BC, Canada). Immunophenotyping to identify suitable subjects for sorting was performed using the following anti-human mAbs. Fluorescent activated cell sorting (FACS) analyses were performed on a FACSCanto II flow cytometer and sorting of B cell populations and of single HIV-specific B cells into 96-well polymerase chain reaction (PCR) plates was performed on a modified 3-laser FACSAria instrument (BD Biosciences; San Jose, CA, USA).
Generally, as B cells divide in response to a pathogen like HIV, genes that produce infection-fighting antibodies mutate, and descendant cells producing the most effective antibodies predominate. Despite the fact that TLM B cells generally divided more frequently than their RM counterparts, the scientists found that the antibodies derived from TLM B cells showed genetic evidence of fewer adaptive mutations than those derived from RM B cells. In turn, these antibodies were less likely to effectively neutralize HIV than those derived from RM B cells. The RM B cells, in contrast, showed evidence of generating antibodies with more helpful mutations.
The authors concluded that nonconventional TLM B cells overrepresented in the peripheral blood of chronically infected HIV-viremic individuals show reduced affinity maturation compared with their clonally related conventional RM counterparts, despite evidence of having undergone more cell divisions. The study was published on March 17, 2016, in the journal JCI Insight.
Related Links:
US National Institute of Allergy and Infectious Diseases
STEMCELL Technologies
BD Biosciences
HIV infection leads to numerous immunologic abnormalities, especially in individuals whose viremia is not well controlled, either naturally or by antiretroviral therapy (ART). B cells are not direct targets for HIV replication; however, direct and indirect consequences of viral replication such as immune activation and lymphopenia lead to numerous B cell abnormalities over the course of infection.
Scientists at the US National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) and their colleagues collected serum and/or leukapheresis products from 25 chronically infected HIV-viremic individuals. The donors were not taking antiretroviral drugs to suppress the level of HIV in their blood, or viral load, at the time of the study. Like many individuals with persistent levels of HIV, the donors' blood samples had abnormally high numbers of immune cells called tissue-like memory (TLM) B cells, compared with resting memory (RM) B cells, which account for the majority of memory B cells in people without HIV.
Peripheral blood mononuclear cells (PBMCs) were obtained by density-gradient centrifugation. Mature CD10-B cells were isolated from PBMCs by negative magnetic bead–based selection using a B cell enrichment cocktail that was supplemented with tetrameric anti-CD10 monoclonal antibodies (mAb) (STEMCELL Technologies; Vancouver, BC, Canada). Immunophenotyping to identify suitable subjects for sorting was performed using the following anti-human mAbs. Fluorescent activated cell sorting (FACS) analyses were performed on a FACSCanto II flow cytometer and sorting of B cell populations and of single HIV-specific B cells into 96-well polymerase chain reaction (PCR) plates was performed on a modified 3-laser FACSAria instrument (BD Biosciences; San Jose, CA, USA).
Generally, as B cells divide in response to a pathogen like HIV, genes that produce infection-fighting antibodies mutate, and descendant cells producing the most effective antibodies predominate. Despite the fact that TLM B cells generally divided more frequently than their RM counterparts, the scientists found that the antibodies derived from TLM B cells showed genetic evidence of fewer adaptive mutations than those derived from RM B cells. In turn, these antibodies were less likely to effectively neutralize HIV than those derived from RM B cells. The RM B cells, in contrast, showed evidence of generating antibodies with more helpful mutations.
The authors concluded that nonconventional TLM B cells overrepresented in the peripheral blood of chronically infected HIV-viremic individuals show reduced affinity maturation compared with their clonally related conventional RM counterparts, despite evidence of having undergone more cell divisions. The study was published on March 17, 2016, in the journal JCI Insight.
Related Links:
US National Institute of Allergy and Infectious Diseases
STEMCELL Technologies
BD Biosciences
Read the full article by registering today, it's FREE!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
- Free digital version edition of LabMedica International sent by email on regular basis
- Free print version of LabMedica International magazine (available only outside USA and Canada).
- Free and unlimited access to back issues of LabMedica International in digital format
- Free LabMedica International Newsletter sent every week containing the latest news
- Free breaking news sent via email
- Free access to Events Calendar
- Free access to LinkXpress new product services
- REGISTRATION IS FREE AND EASY!
Sign in: Registered website members
Sign in: Registered magazine subscribers
Latest Immunology News
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
- Companion Diagnostic Test for CRC Patients Identifies Eligible Treatment Population
- Novel Tool Uses Deep Learning for Precision Cancer Therapy
- Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
- Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
- Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
- Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
- Novel Gene Signature Predicts Immunotherapy Response in Advanced Kidney Cancers
- New Technology Deciphers Immune Cell Communication to Predict Immunotherapy Response
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreMolecular Diagnostics
view channel
New DNA Test Tracks Spread of Parasitic Disease from Single Sample
Leishmaniasis remains a major challenge for veterinary and public health systems, largely because its transmission involves multiple sand fly species and a wide range of animal hosts. Understanding these... Read more
Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
Diabetic kidney disease often develops silently, and many patients are diagnosed only after irreversible damage has occurred. Late diagnosis frequently leads to complications affecting the kidneys, heart,... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more









