LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Multiplex Quantitative Assays Detect Polyparasitism

By LabMedica International staff writers
Posted on 09 Feb 2016
Image: The Rotor-Gene 6000 for quantifying DNA (Photo courtesy of Corbett Life Science)
Image: The Rotor-Gene 6000 for quantifying DNA (Photo courtesy of Corbett Life Science)
Image: The Powersoil DNA Isolation Kit (Photo courtesy of Mo Bio).
Image: The Powersoil DNA Isolation Kit (Photo courtesy of Mo Bio).
Accurate quantitative assessment of infection with soil transmitted helminths and protozoa are essential to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies.

As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques, such as polymerase chain reaction (PCR) methodology, for assessment of infection intensity for both purposes.

An international team of scientists led by those at the QIMR Berghofer Medical Research Institute (Herston, Australia) collected fecal samples from a total of 680 people, originating from rural communities: 467 from samples Timor-Leste and 213 samples from Cambodia. DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions, the first targeting both helminths and protozoa. Samples were also subject to sodium nitrate flotation for identification and quantification of soil transmitted helminth (STH) eggs, and zinc sulfate centrifugal flotation for detection of protozoan parasites.

DNA extraction was performed using the Powersoil DNA Isolation Kit (Mo Bio, Carlsbad, CA USA). Extracted DNA was run in two pentaplex real-time PCR reactions. The first was a quantitative assay for Necator americanus, Ancylostoma spp. (A. duodenale, A. ceylanicum), Ascaris spp., Trichuris trichiura; the second was a semi-quantitative assay for Entamoeba histolytica, Cryptosporidium spp., Giardia duodenalis, and Strongyloides stercoralis. The Rotor-Gene 6000 (Qiagen, Melbourne, Australia) was used for all PCR assays, with reactions set up for both PCR reactions.

Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%). Although, all STH positive samples were low intensity infections by microscopy as defined by official guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections.

The authors concluded that multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and Giardia compared to microscopy, especially in samples exhibiting polyparasitism. The superior performance of multiplex PCR to detect polyparasitism and more accurately determine infection intensity suggests that it is a more appropriate technique for use in epidemiologic studies and for monitoring large-scale intervention trials. The study was published on January 28, 2016, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

QIMR Berghofer Medical Research Institute
Mo Bio 
Qiagen 


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Homocysteine Quality Control
Liquichek Homocysteine Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more