New Infectious Disease Test Promises Quick Diagnosis
|
By LabMedica International staff writers Posted on 05 Jan 2016 |

Image: Colored Transmission electron micrograph of Clostridium difficile forming an endospore (red) (Photo courtesy of Dr. J. Thomas Lamont).
Early detection of specific pathogens has long been recognized as a vital strategy in the control of infectious diseases because it can lead to timely care of patients and prevent potential outbreaks.
The detection of specific bacteria represents a significant challenge because of the presence of many different species of bacteria in biological samples. Furthermore, for any given species of bacterium, only virulent strains are infectious while other strains of the same species may be harmless or even beneficial to human health.
A team of scientists led by those at McMaster University (Hamilton, ON, Canada) found a way to make DNAzymes, or single-stranded catalytic DNA molecules from a simple test tube technique that allows for isolation of rare DNA sequences with special functions. The team's first success was the development of a molecular probe that precisely recognizes the strain which caused the outbreak of Clostridium difficile infection in Hamilton, Ontario in 2011. This strain was very infectious, resistant to antibiotics and even fatal to some patients. Instead of having to do several different tests to narrow down to a positive identification of the specific strain, the scientists can now quickly pinpoint this superbug using their new molecular probe.
The team obtained an RNA-cleaving fluorogenic DNAzyme (RFD) that can recognize an infectious strain of C. difficile. This DNAzyme not only exhibits no cross-reactivity to other bacterial species, but also is highly strain-selective for C. difficile. The special DNAzyme (catalytic DNA), RFD-CD1, showed exquisite specificity for a pathogenic strain of C. difficile. RFD-CD1 was derived by an in vitro selection approach where a random-sequence DNA library was allowed to react with an unpurified molecular mixture derived from this strain of C. difficile, coupled with a subtractive selection strategy to eliminate cross-reactivities to unintended C. difficile strains and other bacteria species.
Bruno J. Salena, MD, an associate professor of medicine and coauthor of the study, said, “This technology can be extended to the further discovery of other superbug strain-specific pathogens. For example, such technology would prove useful in the identification of hypervirulent or resistant strains, implementation of the most appropriate strain-specific treatments and tracking of outbreaks.” The study was published on December 16, 2015, in the journal Angewandte Chemie International Edition.
Related Links:
McMaster University
The detection of specific bacteria represents a significant challenge because of the presence of many different species of bacteria in biological samples. Furthermore, for any given species of bacterium, only virulent strains are infectious while other strains of the same species may be harmless or even beneficial to human health.
A team of scientists led by those at McMaster University (Hamilton, ON, Canada) found a way to make DNAzymes, or single-stranded catalytic DNA molecules from a simple test tube technique that allows for isolation of rare DNA sequences with special functions. The team's first success was the development of a molecular probe that precisely recognizes the strain which caused the outbreak of Clostridium difficile infection in Hamilton, Ontario in 2011. This strain was very infectious, resistant to antibiotics and even fatal to some patients. Instead of having to do several different tests to narrow down to a positive identification of the specific strain, the scientists can now quickly pinpoint this superbug using their new molecular probe.
The team obtained an RNA-cleaving fluorogenic DNAzyme (RFD) that can recognize an infectious strain of C. difficile. This DNAzyme not only exhibits no cross-reactivity to other bacterial species, but also is highly strain-selective for C. difficile. The special DNAzyme (catalytic DNA), RFD-CD1, showed exquisite specificity for a pathogenic strain of C. difficile. RFD-CD1 was derived by an in vitro selection approach where a random-sequence DNA library was allowed to react with an unpurified molecular mixture derived from this strain of C. difficile, coupled with a subtractive selection strategy to eliminate cross-reactivities to unintended C. difficile strains and other bacteria species.
Bruno J. Salena, MD, an associate professor of medicine and coauthor of the study, said, “This technology can be extended to the further discovery of other superbug strain-specific pathogens. For example, such technology would prove useful in the identification of hypervirulent or resistant strains, implementation of the most appropriate strain-specific treatments and tracking of outbreaks.” The study was published on December 16, 2015, in the journal Angewandte Chemie International Edition.
Related Links:
McMaster University
Latest Technology News
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
Diagnosing amyotrophic lateral sclerosis (ALS) remains difficult even with advanced imaging and genetic tools, especially when clinicians must distinguish it from other neurodegenerative conditions that... Read more
Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes
Dengue fever remains the most common mosquito-borne viral infection worldwide, posing a major public health challenge as global cases continue to surge. In 2024 alone, more than 14.6 million infections... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read morePathology
view channel
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read more
3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
Standard laboratory tests often fail to detect complex DNA rearrangements that underlie many genetic diseases. To bridge this diagnostic gap, researchers have developed a 3D chromosome mapping method that... Read more
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








