We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Infectious Disease Test Promises Quick Diagnosis

By LabMedica International staff writers
Posted on 05 Jan 2016
Image: Colored Transmission electron micrograph of Clostridium difficile forming an endospore (red) (Photo courtesy of Dr. J. Thomas Lamont).
Image: Colored Transmission electron micrograph of Clostridium difficile forming an endospore (red) (Photo courtesy of Dr. J. Thomas Lamont).
Early detection of specific pathogens has long been recognized as a vital strategy in the control of infectious diseases because it can lead to timely care of patients and prevent potential outbreaks.

The detection of specific bacteria represents a significant challenge because of the presence of many different species of bacteria in biological samples. Furthermore, for any given species of bacterium, only virulent strains are infectious while other strains of the same species may be harmless or even beneficial to human health.

A team of scientists led by those at McMaster University (Hamilton, ON, Canada) found a way to make DNAzymes, or single-stranded catalytic DNA molecules from a simple test tube technique that allows for isolation of rare DNA sequences with special functions. The team's first success was the development of a molecular probe that precisely recognizes the strain which caused the outbreak of Clostridium difficile infection in Hamilton, Ontario in 2011. This strain was very infectious, resistant to antibiotics and even fatal to some patients. Instead of having to do several different tests to narrow down to a positive identification of the specific strain, the scientists can now quickly pinpoint this superbug using their new molecular probe.

The team obtained an RNA-cleaving fluorogenic DNAzyme (RFD) that can recognize an infectious strain of C. difficile. This DNAzyme not only exhibits no cross-reactivity to other bacterial species, but also is highly strain-selective for C. difficile. The special DNAzyme (catalytic DNA), RFD-CD1, showed exquisite specificity for a pathogenic strain of C. difficile. RFD-CD1 was derived by an in vitro selection approach where a random-sequence DNA library was allowed to react with an unpurified molecular mixture derived from this strain of C. difficile, coupled with a subtractive selection strategy to eliminate cross-reactivities to unintended C. difficile strains and other bacteria species.

Bruno J. Salena, MD, an associate professor of medicine and coauthor of the study, said, “This technology can be extended to the further discovery of other superbug strain-specific pathogens. For example, such technology would prove useful in the identification of hypervirulent or resistant strains, implementation of the most appropriate strain-specific treatments and tracking of outbreaks.” The study was published on December 16, 2015, in the journal Angewandte Chemie International Edition.

Related Links:

McMaster University


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
New
Clinical Chemistry System
P780
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000

Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more