Blood Test Increases Accuracy in Prenatal Testing
|
By LabMedica International staff writers Posted on 22 Nov 2015 |

Image: The Qubit Fluorometer accurately detects and quantifies very low concentrations of DNA, RNA, and protein (Photo courtesy of Great Lakes Genomics Center).
A simple, accurate and low risk blood test can detect fetal blood group, sex, and genetic conditions in unborn babies and the DNA test is inexpensive and is noninvasive, as opposed to the traditional amniocentesis test that involves a needle and carries a minor risk of miscarriage.
Laboratory methods have been evaluated for noninvasive genotyping of fetal RHD (Rh blood group, D antigen) that can prevent the unnecessary administration of prophylactic anti-D to women carrying RHD-negative fetuses. The test developed can be carried out on mothers at risk of X-linked genetic recessive diseases including hemophilia and Duchenne muscular dystrophy and mothers at risk of hemolytic disease of the new-born.
Scientists at the University of Plymouth (UK) recruited RHD-negative pregnant women (28 to 30 weeks' gestation), all of whom met inclusion criteria, from November 2013 to September 2014. Twenty-two maternal peripheral blood samples were collected in Ethylenediaminetetraacetic acid (EDTA) tubes and centrifuged at 1,600×g for 10 minutes at room temperature (samples 1–22). The plasma was carefully removed and transferred to a 15-mL tube. The plasma was then re-centrifuged at 16,000×g for 10 minutes.
Twenty-four maternal blood samples collected in Streck Cell-Free DNA blood collection tubes (Streck BCTs; La Vista, NE, USA) were centrifuged at 1,600×g for 15 minutes at room temperature (samples 23–46). Plasma was carefully removed, transferred to a 50-mL tube, and re-centrifuged at 2,500×g for 10 minutes. DNA was extracted from two 1-mL aliquots of plasma and quantified samples on the Qubit 2.0 Fluorometer (Thermo Fisher; Waltham, MA, USA). Using Y-specific and RHD-specific targets, the team investigated variation in the cell-free fetal DNA (cffDNA) fraction and determined the sensitivity achieved for optimal and suboptimal samples with a novel Droplet Digital polymerase chain reaction (ddPCR, Bio-Rad Laboratories; Hercules CA, USA) platform compared with real-time quantitative PCR (qPCR).
The cffDNA fraction was significantly larger for samples collected in Streck BCTs compared with samples collected in EDTA tubes. In samples expressing optimal cffDNA fractions greater than 4%, both qPCR and ddPCR showed 100% sensitivity for the testis-specific protein, Y-linked 1(TSPY1) and RHD exon 7 (RHD7) assays. Although ddPCR also had 100% sensitivity for RHD exon 5 (RHD5), qPCR had reduced sensitivity (83%) for this target. For samples expressing suboptimal cffDNA fractions, less than 2%, ddPCR achieved 100% sensitivity for all assays, whereas qPCR achieved 100% sensitivity only for the TSPY1 multicopy target assay.
Neil D. Avent, PhD, a professor and lead author of the study, said, “Although fetal blood grouping and sexing using maternal blood has been done for over a decade, this study proves a much more accurate and sensitive method of detecting fetal DNA. This offers great opportunities to detect other conditions using this technique, but is much cheaper than current noninvasive methods. The end is now in sight for the invasive techniques of amniocentesis and chorionic villus sampling.” The study was published in the November 2015 issue of the journal Clinical Chemistry.
Related Links:
University of Plymouth
Streck
Thermo Fisher
Laboratory methods have been evaluated for noninvasive genotyping of fetal RHD (Rh blood group, D antigen) that can prevent the unnecessary administration of prophylactic anti-D to women carrying RHD-negative fetuses. The test developed can be carried out on mothers at risk of X-linked genetic recessive diseases including hemophilia and Duchenne muscular dystrophy and mothers at risk of hemolytic disease of the new-born.
Scientists at the University of Plymouth (UK) recruited RHD-negative pregnant women (28 to 30 weeks' gestation), all of whom met inclusion criteria, from November 2013 to September 2014. Twenty-two maternal peripheral blood samples were collected in Ethylenediaminetetraacetic acid (EDTA) tubes and centrifuged at 1,600×g for 10 minutes at room temperature (samples 1–22). The plasma was carefully removed and transferred to a 15-mL tube. The plasma was then re-centrifuged at 16,000×g for 10 minutes.
Twenty-four maternal blood samples collected in Streck Cell-Free DNA blood collection tubes (Streck BCTs; La Vista, NE, USA) were centrifuged at 1,600×g for 15 minutes at room temperature (samples 23–46). Plasma was carefully removed, transferred to a 50-mL tube, and re-centrifuged at 2,500×g for 10 minutes. DNA was extracted from two 1-mL aliquots of plasma and quantified samples on the Qubit 2.0 Fluorometer (Thermo Fisher; Waltham, MA, USA). Using Y-specific and RHD-specific targets, the team investigated variation in the cell-free fetal DNA (cffDNA) fraction and determined the sensitivity achieved for optimal and suboptimal samples with a novel Droplet Digital polymerase chain reaction (ddPCR, Bio-Rad Laboratories; Hercules CA, USA) platform compared with real-time quantitative PCR (qPCR).
The cffDNA fraction was significantly larger for samples collected in Streck BCTs compared with samples collected in EDTA tubes. In samples expressing optimal cffDNA fractions greater than 4%, both qPCR and ddPCR showed 100% sensitivity for the testis-specific protein, Y-linked 1(TSPY1) and RHD exon 7 (RHD7) assays. Although ddPCR also had 100% sensitivity for RHD exon 5 (RHD5), qPCR had reduced sensitivity (83%) for this target. For samples expressing suboptimal cffDNA fractions, less than 2%, ddPCR achieved 100% sensitivity for all assays, whereas qPCR achieved 100% sensitivity only for the TSPY1 multicopy target assay.
Neil D. Avent, PhD, a professor and lead author of the study, said, “Although fetal blood grouping and sexing using maternal blood has been done for over a decade, this study proves a much more accurate and sensitive method of detecting fetal DNA. This offers great opportunities to detect other conditions using this technique, but is much cheaper than current noninvasive methods. The end is now in sight for the invasive techniques of amniocentesis and chorionic villus sampling.” The study was published in the November 2015 issue of the journal Clinical Chemistry.
Related Links:
University of Plymouth
Streck
Thermo Fisher
Latest Molecular Diagnostics News
- Blood Test Combined with MRI Brain Scans Reveals Two Distinct Multiple Sclerosis Types
- Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology
- Blood Test Could Predict Death Risk in World’s Most Common Inherited Heart Disease
- Rapid POC Hepatitis C Test Provides Results Within One Hour
- New Biomarkers Predict Disease Severity in Children with RSV Bronchiolitis
- CTC Measurement Blood Test Guides Treatment Decisions in Metastatic Breast Cancer Subtype
- Multiplex Antibody Assay Could Transform Hepatitis B Immunity Testing
- Genetic Testing Improves Comprehensive Risk-Based Screening for Breast Cancer
- Urine Test Could Reveal Real Age and Life Span
- Genomic Test Identifies African Americans at Risk for Early Prostate Cancer Recurrence
- Blood Test Could Identify Biomarker Signature of Cerebral Malaria
- World’s First Biomarker Blood Test to Assess MS Progression
- Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
- Sample Prep Instrument to Empower Decentralized PCR Testing for Tuberculosis
- Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis
- World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
Genetics and AI Improve Diagnosis of Aortic Stenosis
Aortic stenosis is a progressive narrowing of the aortic valve that restricts blood flow from the heart and can be fatal if left untreated. There are currently no medical therapies that can prevent or... Read more
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







