Miniaturized Magnetic Resonance for Direct Diagnosis of Candida Infection in the Blood
By LabMedica International staff writers Posted on 30 Sep 2015 |

Image: Loading the T2Candida panel into the Stat drawer of the T2Dx instrument (Photo courtesy of T2 Biosystems).
An innovative approach for diagnosis of Candida infection directly from blood samples is based on miniaturized magnetic resonance technology and does not require any sample pretreatment or extraction.
T2 Biosystems, Inc. (Lexington, MA, USA) introduced its T2Candida Panel designed for use on the T2 Magnetic Resonance (T2MR) platform, the T2Dx, at the recent San Diego (CA, USA) joint meeting of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the International Society of Chemotherapy (ICC).
T2MR utilizes miniaturized magnetic resonance technology, which measures how water molecules react in the presence of magnetic fields. For molecular and immunodiagnostics targets it capitalizes on advances in the field of nanotechnology by deploying particles with superparamagnetic properties that enhance the magnetic resonance signals of specific binding events. When particles coated with target-specific binding agents are added to a sample containing the target, the particles bind to and cluster around the target. This clustering changes the microscopic environment of water molecules in that sample, which in turn alters the magnetic resonance signal, or the T2 relaxation signal that is measured, indicating the presence, absence, or concentration of the target.
Unlike most detection methods, T2MR can quickly and accurately identify molecular targets within patient samples without the need for purification or extraction of target molecules from the sample.
In a clinical study, specimens were collected from 23 patients on the day of enrollment and on days three, five and seven. Blood culture and T2Candida test results were compared to determine which method was most accurate for monitoring those patients.
Results revealed that T2Candida demonstrated greater accuracy in detecting invasive candidiasis, or the presence of the Candida infection, reporting 17 positive results during the testing period for nine patients with candidemia who were receiving antifungal therapy, while blood culture reported only three positive results within the same patient set. Overall, T2Candida demonstrated 91.1% sensitivity, 99.4% specificity, and limit of detection as low as one CFU/mL (colony forming unit per milliliter).
“Previous studies have demonstrated that blood culture may yield false negative test results when patients are on antifungal therapy,” said John McDonough, president and CEO of T2 Biosystems. “The results from this study demonstrate that T2Candida can provide more accurate results for patients who are on antifungals which can enable physicians to make better treatment decisions regarding the duration of therapy and controlling the source of the infection, including catheterization procedures and other medical interventions known to cause the disease.”
Details of the comparing the effectiveness of the T2Candida panel to blood culture were published in the September 15, 2015, online edition of the journal Future Microbiology.
Related Links:
T2 Biosystems, Inc.
T2 Biosystems, Inc. (Lexington, MA, USA) introduced its T2Candida Panel designed for use on the T2 Magnetic Resonance (T2MR) platform, the T2Dx, at the recent San Diego (CA, USA) joint meeting of the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the International Society of Chemotherapy (ICC).
T2MR utilizes miniaturized magnetic resonance technology, which measures how water molecules react in the presence of magnetic fields. For molecular and immunodiagnostics targets it capitalizes on advances in the field of nanotechnology by deploying particles with superparamagnetic properties that enhance the magnetic resonance signals of specific binding events. When particles coated with target-specific binding agents are added to a sample containing the target, the particles bind to and cluster around the target. This clustering changes the microscopic environment of water molecules in that sample, which in turn alters the magnetic resonance signal, or the T2 relaxation signal that is measured, indicating the presence, absence, or concentration of the target.
Unlike most detection methods, T2MR can quickly and accurately identify molecular targets within patient samples without the need for purification or extraction of target molecules from the sample.
In a clinical study, specimens were collected from 23 patients on the day of enrollment and on days three, five and seven. Blood culture and T2Candida test results were compared to determine which method was most accurate for monitoring those patients.
Results revealed that T2Candida demonstrated greater accuracy in detecting invasive candidiasis, or the presence of the Candida infection, reporting 17 positive results during the testing period for nine patients with candidemia who were receiving antifungal therapy, while blood culture reported only three positive results within the same patient set. Overall, T2Candida demonstrated 91.1% sensitivity, 99.4% specificity, and limit of detection as low as one CFU/mL (colony forming unit per milliliter).
“Previous studies have demonstrated that blood culture may yield false negative test results when patients are on antifungal therapy,” said John McDonough, president and CEO of T2 Biosystems. “The results from this study demonstrate that T2Candida can provide more accurate results for patients who are on antifungals which can enable physicians to make better treatment decisions regarding the duration of therapy and controlling the source of the infection, including catheterization procedures and other medical interventions known to cause the disease.”
Details of the comparing the effectiveness of the T2Candida panel to blood culture were published in the September 15, 2015, online edition of the journal Future Microbiology.
Related Links:
T2 Biosystems, Inc.
Latest Microbiology News
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
- POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
- Rapid Diagnostic Test Slashes Sepsis Mortality by 39%
- Blood Culture Assay Enhances Diagnostic Stewardship Through Targeted Panel Selection
- Real-Time Genome Sequencing Detects Dangerous Superbug Causing Hospital Infections
- Diagnostic Test Accurately Detects Colorectal Cancer by Identifying Microbial Signature in Gut Bacteria
- Rapid Bedside Test Predicts Sepsis with Over 90% Accuracy
- New Blood Test Detects Up to Five Infectious Diseases at POC
- Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
- New Test Diagnoses Bacterial Meningitis Quickly and Accurately
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
DNA Methylation Signatures of Aging Could Help Assess Mortality Risk
Aging is associated with the progressive degeneration and loss of function across multiple physiological systems. Chronological age is the most common indicator of aging; however, there is significant... Read more
Molecular Diagnostics System Provides Lab-Quality Results at POC
Currently, there is a need for a comprehensive molecular diagnostics ecosystem that enables effective diagnostic stewardship, providing the diagnostic tools to offer the right tests, for the right patient,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read morePathology
view channel
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more