Major Advancement Detects Cystic Fibrosis Lung Infections
|
By LabMedica International staff writers Posted on 09 Aug 2015 |

Image: The Agilent 2100 Bioanalyzer microfluids-based platform (Photo courtesy of the University of Oklahoma).
A novel diagnostic approach has been developed that offers an unprecedented rapid and accurate diagnosis of lung infections in patients with cystic fibrosis, a disease affecting around 9,000 people in the UK.
Respiratory infection in cystic fibrosis (CF) is polymicrobial, but standard sputum microbiology does not account for the lung microbiome or detect changes in microbial diversity associated with disease.
Scientists at the University Hospital of South Manchester (UK) and their colleagues collected 200 sputum specimens from 93 CF patients. In all cases, CF had been diagnosed prior to study entry on the basis of clinical, biochemical, and genetic results in line with standard clinical practice. At each visit, patients provided paired sputum samples for conventional culture and culture-independent analysis and ribosomal intergenic spacer analysis (RISA) and 16S ribosomal ribonucleic acid (rRNA) gene pyrosequencing.
RISA polymerase chain reaction (PCR) was performed and the 2 μL of amplified DNA amplicons were separated by the 2100 Bioanalyzer microfluidics (Agilent Technologies; Santa Clara, CA, USA), and their profiles were analyzed using Gelcompar II (Applied Maths; Sint-Martens Latem, Belgium). A subset of samples from 60 patients representative of the diversity observed by RISA profile cluster analysis were selected for 16S rRNA gene pyrosequencing analysis performed by Research and Testing Laboratory Inc. (Lubbock, TX, USA).
Compared to the microbiology data, RISA profiles clustered into two groups: the emerging non-fermenting Gram-negative organisms (eNFGN) and Pseudomonas groups. Patients who were culture positive for Burkholderia, Achromobacter, Stenotrophomonas, and Ralstonia clustered within the eNFGN group. Pseudomonas group RISA profiles were associated with Pseudomonas aeruginosa culture-positive patients.
The authors concluded that nucleic acids isolated from CF sputum can serve as a single template for both molecular virology and bacteriology, with a RISA PCR rapidly detecting the presence of dominant eNFGN pathogens or P. aeruginosa missed by culture as was observed in 11% of cases. They showed how this straightforward CF microbiota profiling scheme may be adopted by clinical laboratories.
Eshwar Mahenthiralingam, PhD, a senior author of the study, said, “By taking advantage of existing virology sample processing methods, and applying simple bacterial genetic tests, we can accurately diagnose infections with very problematic antibiotic-resistant bacteria. Better diagnosis of these infections will improve treatment, quality of life and survival for people with cystic fibrosis.” The study was published in the July 2015 issue of the Journal of Clinical Microbiology.
Related Links:
University Hospital of South Manchester
Agilent Technologies
Applied Maths
Respiratory infection in cystic fibrosis (CF) is polymicrobial, but standard sputum microbiology does not account for the lung microbiome or detect changes in microbial diversity associated with disease.
Scientists at the University Hospital of South Manchester (UK) and their colleagues collected 200 sputum specimens from 93 CF patients. In all cases, CF had been diagnosed prior to study entry on the basis of clinical, biochemical, and genetic results in line with standard clinical practice. At each visit, patients provided paired sputum samples for conventional culture and culture-independent analysis and ribosomal intergenic spacer analysis (RISA) and 16S ribosomal ribonucleic acid (rRNA) gene pyrosequencing.
RISA polymerase chain reaction (PCR) was performed and the 2 μL of amplified DNA amplicons were separated by the 2100 Bioanalyzer microfluidics (Agilent Technologies; Santa Clara, CA, USA), and their profiles were analyzed using Gelcompar II (Applied Maths; Sint-Martens Latem, Belgium). A subset of samples from 60 patients representative of the diversity observed by RISA profile cluster analysis were selected for 16S rRNA gene pyrosequencing analysis performed by Research and Testing Laboratory Inc. (Lubbock, TX, USA).
Compared to the microbiology data, RISA profiles clustered into two groups: the emerging non-fermenting Gram-negative organisms (eNFGN) and Pseudomonas groups. Patients who were culture positive for Burkholderia, Achromobacter, Stenotrophomonas, and Ralstonia clustered within the eNFGN group. Pseudomonas group RISA profiles were associated with Pseudomonas aeruginosa culture-positive patients.
The authors concluded that nucleic acids isolated from CF sputum can serve as a single template for both molecular virology and bacteriology, with a RISA PCR rapidly detecting the presence of dominant eNFGN pathogens or P. aeruginosa missed by culture as was observed in 11% of cases. They showed how this straightforward CF microbiota profiling scheme may be adopted by clinical laboratories.
Eshwar Mahenthiralingam, PhD, a senior author of the study, said, “By taking advantage of existing virology sample processing methods, and applying simple bacterial genetic tests, we can accurately diagnose infections with very problematic antibiotic-resistant bacteria. Better diagnosis of these infections will improve treatment, quality of life and survival for people with cystic fibrosis.” The study was published in the July 2015 issue of the Journal of Clinical Microbiology.
Related Links:
University Hospital of South Manchester
Agilent Technologies
Applied Maths
Latest Microbiology News
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
Accurately identifying lymph node metastasis in early-stage gastric cancer remains a major clinical challenge. CT imaging often misses up to half of lymph node–positive cases, leading clinicians to recommend... Read more
First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
More than 176,000 people are diagnosed with multiple myeloma worldwide each year, yet the current diagnostic pathway can be slow and uncertain, often relying on a highly subjective interpretation of test results.... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read morePathology
view channel
AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more







 Analyzer.jpg)
