LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Major Advancement Detects Cystic Fibrosis Lung Infections

By LabMedica International staff writers
Posted on 09 Aug 2015
Image: The Agilent 2100 Bioanalyzer microfluids-based platform (Photo courtesy of the University of Oklahoma).
Image: The Agilent 2100 Bioanalyzer microfluids-based platform (Photo courtesy of the University of Oklahoma).
A novel diagnostic approach has been developed that offers an unprecedented rapid and accurate diagnosis of lung infections in patients with cystic fibrosis, a disease affecting around 9,000 people in the UK.

Respiratory infection in cystic fibrosis (CF) is polymicrobial, but standard sputum microbiology does not account for the lung microbiome or detect changes in microbial diversity associated with disease.

Scientists at the University Hospital of South Manchester (UK) and their colleagues collected 200 sputum specimens from 93 CF patients. In all cases, CF had been diagnosed prior to study entry on the basis of clinical, biochemical, and genetic results in line with standard clinical practice. At each visit, patients provided paired sputum samples for conventional culture and culture-independent analysis and ribosomal intergenic spacer analysis (RISA) and 16S ribosomal ribonucleic acid (rRNA) gene pyrosequencing.

RISA polymerase chain reaction (PCR) was performed and the 2 μL of amplified DNA amplicons were separated by the 2100 Bioanalyzer microfluidics (Agilent Technologies; Santa Clara, CA, USA), and their profiles were analyzed using Gelcompar II (Applied Maths; Sint-Martens Latem, Belgium). A subset of samples from 60 patients representative of the diversity observed by RISA profile cluster analysis were selected for 16S rRNA gene pyrosequencing analysis performed by Research and Testing Laboratory Inc. (Lubbock, TX, USA).

Compared to the microbiology data, RISA profiles clustered into two groups: the emerging non-fermenting Gram-negative organisms (eNFGN) and Pseudomonas groups. Patients who were culture positive for Burkholderia, Achromobacter, Stenotrophomonas, and Ralstonia clustered within the eNFGN group. Pseudomonas group RISA profiles were associated with Pseudomonas aeruginosa culture-positive patients.

The authors concluded that nucleic acids isolated from CF sputum can serve as a single template for both molecular virology and bacteriology, with a RISA PCR rapidly detecting the presence of dominant eNFGN pathogens or P. aeruginosa missed by culture as was observed in 11% of cases. They showed how this straightforward CF microbiota profiling scheme may be adopted by clinical laboratories.

Eshwar Mahenthiralingam, PhD, a senior author of the study, said, “By taking advantage of existing virology sample processing methods, and applying simple bacterial genetic tests, we can accurately diagnose infections with very problematic antibiotic-resistant bacteria. Better diagnosis of these infections will improve treatment, quality of life and survival for people with cystic fibrosis.” The study was published in the July 2015 issue of the Journal of Clinical Microbiology.

Related Links:
University Hospital of South Manchester
Agilent Technologies 
Applied Maths 


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Integrated Biochemical & Immunological System
Biolumi CX8
New
Drug Test Kit
DrugCheck 3000

DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
PURITAN MEDICAL