We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Highly Sensitive Method Detects Malaria Parasites

By LabMedica International staff writers
Posted on 18 Mar 2015
Print article
Image: A gametocyte of Plasmodium falciparum in a thin blood smear and also seen are ring-form trophozoites and a red blood cell exhibiting basophilic stippling (Photo courtesy of Dr. Mae Melvin).
Image: A gametocyte of Plasmodium falciparum in a thin blood smear and also seen are ring-form trophozoites and a red blood cell exhibiting basophilic stippling (Photo courtesy of Dr. Mae Melvin).
A large proportion of asymptomatic malaria infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes.

New molecular assays that take advantage of genes with multiple copies in the parasite genome have been developed that can detect malaria parasites in human blood at very low levels and might be helpful in the campaign to eradicate malaria.

An international team of scientists led by those at the Swiss Tropical and Public Health Institute (Basel, Switzerland) compared three methods to detect malaria parasites in 498 samples randomly selected from a malaria survey in Tanzania: light microscopy, the current standard molecular assay, and the new assays. Two quantitative polymerase chain reaction (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ~250 copies/genome) and the var gene acidic terminal sequence (varATS, 59 copies/genome).

Parasites were detected in 25% of samples by light microscopy, in 50% by the standard assay, and in 58% by the new assays. Compared to the new assays, the current molecular standard assay failed to identify 16% of infections, and at least 40% of those contained parasite gametocytes, the parasite stage that is transmitted when mosquitoes bite an infected person. Standard PCR is widely considered a molecular gold standard of malaria diagnosis complementing light microscopy, the traditional gold standard, yet these results suggest that this notion requires revision.

The new assays detect only the most common malaria parasite, P. falciparum, and while they can use very small blood samples collected in the field, the analysis itself needs to be done in a biomedical laboratory. Nonetheless, because low-density infections without disease symptoms are expected to become increasingly common as countries improve malaria control, ultra-sensitive tools such as these will likely be critical for malaria surveillance and for monitoring the progress of malaria control and elimination programs. The study was published on March 3, 2015, in the journal Public Library of Science Medicine.

Related Links:

Swiss Tropical and Public Health Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more