Positive Blood Culture Removal Time Significantly Decreases Processing Time
|
By LabMedica International staff writers Posted on 18 Feb 2015 |
Timely processing of blood cultures with positive results, including Gram staining and notification of clinicians, is a critical function of the clinical microbiology laboratory.
Although empiric administration of antibiotics is critical, targeted therapy based on actionable data from the clinical microbiology laboratory must be implemented as soon as the data are available as inadequate antimicrobial treatment of bloodstream infections is associated with significantly increased mortality and, in surviving patients, increased hospital length of stay.
Scientists at the Houston Methodist Hospital (TX, USA) performed a retrospective analysis of positive blood culture processing times. Data for specimens collected seven months before and seven months after an in-service meeting were retrieved and analyzed. In some instances, no organisms were seen on initial Gram stain after a positive alert. In those cases, the culture bottles were returned to the automated blood culture system BACTEC FX instrument (BD Diagnostics, Sparks, MD, USA) for further incubation. As the Epicenter software does not log the initial removal, the positive-to-removal (PR) time was erroneously prolonged, and these samples were excluded from the analysis.
Before the in-service meeting, the average PR time for 5,057 samples was 38 minutes. They discovered unexpectedly that only 51.8% (2,617 of 5,057) of the positive blood cultures were removed in less than 10 minutes. After the in-service meeting, for 5,293 samples, the average PR time improved to eight minutes, the aggregate time also improved, and 84.5% (4,470 of 5,293) of the positive blood cultures were removed in less than 10 minutes. These improvements reduced the time to telephone notification of the Gram stain results to a caregiver by 46.7% (from 105 minutes to 56 minutes).
The authors concluded improvement of sepsis outcomes and costs requires rapid generation of actionable data from the clinical microbiology laboratory. Vigilant monitoring of parameters such as the PR time and meticulous identification of barriers to rapid pathogen identification has the potential to continue to decrease pathogen reporting time, decrease health care costs, and decrease morbidity and mortality associated with bloodstream infections. The study was published in the February 2015 issue of the Archives of Pathology & Laboratory Medicine.
Related Links:
Houston Methodist Hospital
BD Diagnostics
Although empiric administration of antibiotics is critical, targeted therapy based on actionable data from the clinical microbiology laboratory must be implemented as soon as the data are available as inadequate antimicrobial treatment of bloodstream infections is associated with significantly increased mortality and, in surviving patients, increased hospital length of stay.
Scientists at the Houston Methodist Hospital (TX, USA) performed a retrospective analysis of positive blood culture processing times. Data for specimens collected seven months before and seven months after an in-service meeting were retrieved and analyzed. In some instances, no organisms were seen on initial Gram stain after a positive alert. In those cases, the culture bottles were returned to the automated blood culture system BACTEC FX instrument (BD Diagnostics, Sparks, MD, USA) for further incubation. As the Epicenter software does not log the initial removal, the positive-to-removal (PR) time was erroneously prolonged, and these samples were excluded from the analysis.
Before the in-service meeting, the average PR time for 5,057 samples was 38 minutes. They discovered unexpectedly that only 51.8% (2,617 of 5,057) of the positive blood cultures were removed in less than 10 minutes. After the in-service meeting, for 5,293 samples, the average PR time improved to eight minutes, the aggregate time also improved, and 84.5% (4,470 of 5,293) of the positive blood cultures were removed in less than 10 minutes. These improvements reduced the time to telephone notification of the Gram stain results to a caregiver by 46.7% (from 105 minutes to 56 minutes).
The authors concluded improvement of sepsis outcomes and costs requires rapid generation of actionable data from the clinical microbiology laboratory. Vigilant monitoring of parameters such as the PR time and meticulous identification of barriers to rapid pathogen identification has the potential to continue to decrease pathogen reporting time, decrease health care costs, and decrease morbidity and mortality associated with bloodstream infections. The study was published in the February 2015 issue of the Archives of Pathology & Laboratory Medicine.
Related Links:
Houston Methodist Hospital
BD Diagnostics
Read the full article by registering today, it's FREE!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
- Free digital version edition of LabMedica International sent by email on regular basis
- Free print version of LabMedica International magazine (available only outside USA and Canada).
- Free and unlimited access to back issues of LabMedica International in digital format
- Free LabMedica International Newsletter sent every week containing the latest news
- Free breaking news sent via email
- Free access to Events Calendar
- Free access to LinkXpress new product services
- REGISTRATION IS FREE AND EASY!
Sign in: Registered website members
Sign in: Registered magazine subscribers
Latest Microbiology News
- AI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
- New Test Measures How Effectively Antibiotics Kill Bacteria
- New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
- New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
- Breakthroughs in Microbial Analysis to Enhance Disease Prediction
- Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
Primary central nervous system lymphoma (PCNSL) is typically diagnosed through surgical biopsy, which remains the gold standard but carries substantial risk. Operability depends heavily on tumor location,... Read more
New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
Acute myeloid leukemia (AML) is one of the most aggressive blood cancers, marked by poor survival rates and limited treatment options, especially in patients who do not respond to standard therapies.... Read moreHematology
view channel
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read morePathology
view channel
AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
Accurately identifying genetic mutations is central to cancer diagnostics and genomic research, but current methods struggle with complex sequencing data and limited clinical samples. Tumor analysis often... Read more
Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
Transthyretin amyloidosis (ATTR) is a rare, progressive, and highly aggressive disease caused by the misfolding of a specific protein that accumulates as toxic amyloid filaments in multiple organs.... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more








