Microdiversity Predicts Outcome in Children's Kidney Cancer
|
By LabMedica International staff writers Posted on 08 Feb 2015 |

Image: CT Scan of 11-centimeter Wilms' tumor of the right kidney in a 13-month-old patient (Photo courtesy of Wikimedia Commons).
A prognosis for the outcome of Wilms' tumor, the most common type of kidney cancer in children, can be determined by examining the genetic variation in a biopsy specimen as small as one millimeter in diameter.
Investigators at Lund University (Sweden) have termed genetic variation in such minute samples as microvariation or microdiversity. They established the importance of this type of variation by analyzing millimeter sized specimens from 44 cases of Wilms' tumor. All 44 patients had been treated with chemotherapy and while most recovered, a few—whose cancers demonstrated the greatest genetic variation between cells—developed metastases and died. Survival was 100% for patients lacking microdiversity.
Very few markers have been found in childhood kidney cancer that can differentiate between aggressive and less dangerous cancers. "The reason for this is that researchers have been looking for certain characteristics, such as mutations, in a single sample from each patient. However, when there is so much variation between the cells, one sample is not enough to determine the properties of the tumor," said senior author Dr. David Gisselsson, a researcher in clinical genetics at Lund University. "Tumors in children are also genetically unstable, and the greater the variation between the cells, the more malignant the cancer. The microvariation is a much better predictor of the risk of metastasis and death than the presence of individual mutations. This is an entirely new way of assessing how dangerous a tumor is."
The study was published in the January 27, 2015, online edition of the journal Nature Communications.
Related Links:
Lund University
Investigators at Lund University (Sweden) have termed genetic variation in such minute samples as microvariation or microdiversity. They established the importance of this type of variation by analyzing millimeter sized specimens from 44 cases of Wilms' tumor. All 44 patients had been treated with chemotherapy and while most recovered, a few—whose cancers demonstrated the greatest genetic variation between cells—developed metastases and died. Survival was 100% for patients lacking microdiversity.
Very few markers have been found in childhood kidney cancer that can differentiate between aggressive and less dangerous cancers. "The reason for this is that researchers have been looking for certain characteristics, such as mutations, in a single sample from each patient. However, when there is so much variation between the cells, one sample is not enough to determine the properties of the tumor," said senior author Dr. David Gisselsson, a researcher in clinical genetics at Lund University. "Tumors in children are also genetically unstable, and the greater the variation between the cells, the more malignant the cancer. The microvariation is a much better predictor of the risk of metastasis and death than the presence of individual mutations. This is an entirely new way of assessing how dangerous a tumor is."
The study was published in the January 27, 2015, online edition of the journal Nature Communications.
Related Links:
Lund University
Latest Pathology News
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
- AI Tool Predicts Treatment Success in Rectal Cancer Patients
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more







 Analyzer.jpg)
