Infection Can Lead to False Negatives for Cerebrospinal Fluid β-2 Transferrin
|
By LabMedica International staff writers Posted on 21 Oct 2014 |
![Image: Scanning Electron Micrograph of Streptococcus pneumoniae by R. Facklam, J. Carr. Cerebrospinal fluid (CSF) β-2 transferrin detection decreases after inoculation with live or ciprofloxacin-inactived S. pneumoniae. This may be due to passive adsorption via distinctive features of the S. pneumoniae cell wall not present in the other bacterial species examined (Photo courtesy of MicrobeWiki and the CDC – [US] Centers for Disease Control and Prevention). Image: Scanning Electron Micrograph of Streptococcus pneumoniae by R. Facklam, J. Carr. Cerebrospinal fluid (CSF) β-2 transferrin detection decreases after inoculation with live or ciprofloxacin-inactived S. pneumoniae. This may be due to passive adsorption via distinctive features of the S. pneumoniae cell wall not present in the other bacterial species examined (Photo courtesy of MicrobeWiki and the CDC – [US] Centers for Disease Control and Prevention).](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2014-10-21/MMS-117.jpg)
Image: Scanning Electron Micrograph of Streptococcus pneumoniae by R. Facklam, J. Carr. Cerebrospinal fluid (CSF) β-2 transferrin detection decreases after inoculation with live or ciprofloxacin-inactived S. pneumoniae. This may be due to passive adsorption via distinctive features of the S. pneumoniae cell wall not present in the other bacterial species examined (Photo courtesy of MicrobeWiki and the CDC – [US] Centers for Disease Control and Prevention).
Researchers have found that the presence of Streptococcus pneumoniae in cerebrospinal fluid (CSF) can lead to false-negative β-2 transferrin (β2TRNSF) test results and misdiagnosis that may detrimentally affect healthcare decisions for patients.
Free passage of bacterial flora from the nasal cavity and paranasal sinuses through a CSF fistula into the cranium may pose increased risk for meningitis and encephalitis. Thus, early diagnosis and treatment of CSF leakage could decrease the risk of a lethal infection. Although β2TRNSF is a highly reliable marker for diagnosing cases of CSF leakage (even in CSF contaminated with blood or other secretions)—it has not been examined in the presence of central nervous system bacterial infection.
In a prospective analysis, a team led by Nir Hirshoren, MD, at the Hebrew University School of Medicine–Hadassah Medical Center (Jerusalem, Israel) examined β2TRNSFdetection in artificially contaminated CSF as a research model. Sterile (tested for sterility) CSF was drawn from 9 prospectively-recruited neurosurgical patients. CSF samples were contaminated in vitro by controlled spiking with bacteria, chosen for ability to cause meningeal neurosurgical-related infections: Streptococcus pneumoniae, methicillin-sensitive Staphylococcus aureus (MSSA), Staphylococcus epidermidis, or Pseudomonas aeruginosa.
β2TRNSF analysis was performed using qualitative immunoblotting electrophoresis and quantitative enzyme-linked immunosorbent assay (ELISA). Two time points were examined, following immediate inoculation (t0 ) and following an overnight incubation (t18 ), over various bacterial-load concentrations. In this study, only S. pneumoniae was observed to significantly affect β2TRNSF detection. At both the t0 and t18 time points following S. pneumoniae inoculation, β2TRNSF was not detected when immunoblotting electrophoresis was used; quantitative analysis using ELISA demonstrated significant β2TRNSF concentration decrease.
A secondary objective of the study was to explore whether the disappearance of β2TRNSF in the assays is due to a passive or active mechanism. The researchers suspected that in some cases of bacterial infections, β2TRNSF might be adsorbed, degraded, or consumed by bacteria. CSF inoculated with S. pneumoniae was also examined in the presence of the non-cell-wall antibiotic ciprofloxacin, which led to the same results. Since β2TRNSF detection decreased also with inactivated (i.e. + ciprofloxacin) S. pneumoniae, a passive process was suggested, possibly due to adsorption via distinctive features of the S. pneumoniae cell wall not present in the other species examined.
The authors note that although the study was limited by a small sample number (n=9), potential bias was largely overcome by exploring different bacterial loads, examining diverse clinical bacterial species, and using two reliable assays. Further investigation in the clinical setting is needed, however the results indicate that, in the presence of a S. pneumoniae cerebral nervous system infection, using a β2TRNSF test for CFS leak detection may be deceiving and should be interpreted cautiously.
The authors further caution that the importance of β2TRNSF assays is limited to borderline, clinical-uncertainty cases. In other cases, a β2TRNSF negative result may not change a clinical decision regardless of CSF S. pneumoniae presence, and appropriate imaging modalities and surgery may be warranted anyway.
The study was reported by Korem M. et al. in the journal Laryngoscope, September 29, 2014, online ahead of print.
Related Links:
Hebrew University School of Medicine – Hadassah Medical Center
Hebrew University Hadassah Medical School
Free passage of bacterial flora from the nasal cavity and paranasal sinuses through a CSF fistula into the cranium may pose increased risk for meningitis and encephalitis. Thus, early diagnosis and treatment of CSF leakage could decrease the risk of a lethal infection. Although β2TRNSF is a highly reliable marker for diagnosing cases of CSF leakage (even in CSF contaminated with blood or other secretions)—it has not been examined in the presence of central nervous system bacterial infection.
In a prospective analysis, a team led by Nir Hirshoren, MD, at the Hebrew University School of Medicine–Hadassah Medical Center (Jerusalem, Israel) examined β2TRNSFdetection in artificially contaminated CSF as a research model. Sterile (tested for sterility) CSF was drawn from 9 prospectively-recruited neurosurgical patients. CSF samples were contaminated in vitro by controlled spiking with bacteria, chosen for ability to cause meningeal neurosurgical-related infections: Streptococcus pneumoniae, methicillin-sensitive Staphylococcus aureus (MSSA), Staphylococcus epidermidis, or Pseudomonas aeruginosa.
β2TRNSF analysis was performed using qualitative immunoblotting electrophoresis and quantitative enzyme-linked immunosorbent assay (ELISA). Two time points were examined, following immediate inoculation (t0 ) and following an overnight incubation (t18 ), over various bacterial-load concentrations. In this study, only S. pneumoniae was observed to significantly affect β2TRNSF detection. At both the t0 and t18 time points following S. pneumoniae inoculation, β2TRNSF was not detected when immunoblotting electrophoresis was used; quantitative analysis using ELISA demonstrated significant β2TRNSF concentration decrease.
A secondary objective of the study was to explore whether the disappearance of β2TRNSF in the assays is due to a passive or active mechanism. The researchers suspected that in some cases of bacterial infections, β2TRNSF might be adsorbed, degraded, or consumed by bacteria. CSF inoculated with S. pneumoniae was also examined in the presence of the non-cell-wall antibiotic ciprofloxacin, which led to the same results. Since β2TRNSF detection decreased also with inactivated (i.e. + ciprofloxacin) S. pneumoniae, a passive process was suggested, possibly due to adsorption via distinctive features of the S. pneumoniae cell wall not present in the other species examined.
The authors note that although the study was limited by a small sample number (n=9), potential bias was largely overcome by exploring different bacterial loads, examining diverse clinical bacterial species, and using two reliable assays. Further investigation in the clinical setting is needed, however the results indicate that, in the presence of a S. pneumoniae cerebral nervous system infection, using a β2TRNSF test for CFS leak detection may be deceiving and should be interpreted cautiously.
The authors further caution that the importance of β2TRNSF assays is limited to borderline, clinical-uncertainty cases. In other cases, a β2TRNSF negative result may not change a clinical decision regardless of CSF S. pneumoniae presence, and appropriate imaging modalities and surgery may be warranted anyway.
The study was reported by Korem M. et al. in the journal Laryngoscope, September 29, 2014, online ahead of print.
Related Links:
Hebrew University School of Medicine – Hadassah Medical Center
Hebrew University Hadassah Medical School
Latest Microbiology News
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection
The disease process in Alzheimer’s begins long before memory loss or cognitive decline becomes apparent. During this silent phase, misfolded proteins gradually form amyloid fibrils, which accumulate in... Read more
New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
Pneumonia continues to be one of the leading causes of death in low- and middle-income countries, where limited access to advanced laboratory infrastructure hampers early and accurate diagnosis.... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








