LDL Particle Number Measured Using NMR Clinical Analyzer
|
By LabMedica International staff writers Posted on 25 Aug 2014 |

Image: The Vantera Clinical Analyzer offers the technology that has the ability to directly enumerate low-density lipoprotein (LDL) particle numbers (Photo courtesy of LipoScience).
Fully-automated high-throughput nuclear magnetic resonance (NMR) spectroscopy has been developed to enable measurements in a clinical laboratory setting.
NMR-measured low-density lipoprotein particle number (LDL-P) has been shown to be more strongly associated with cardiovascular disease outcomes than LDL cholesterol (LDL-C) in individuals for whom these alternate measures of LDL are discordant.
Scientists at LipoScience Inc. (Raleigh, NC, USA) purchased serum pools and controls from Solomon Park Research Laboratories (Kirkland, WA, USA). Controls were prepared by identifying serum samples with high and low lipoprotein ranges. Additional serum pools were prepared in-house from donor subjects identified at LipoScience or Mayo Clinic (Rochester, MN, USA). NMR spectra were acquired on the NMR Profiler (Bruker Bio-Spin; Billerica, MA, USA) or the Vantera Clinical Analyzer (Agilent Technologies; Santa Clara, CA, USA), both equipped with 400 MHz 1H NMR spectrometers.
The sensitivity and linearity were established within the range of 300–3,500 nmol/L. For serum pools containing low, medium and high levels of LDL-P, the inter-assay, intra-assay precision and repeatability gave coefficients of variation (CVs) between 2.6 and 5.8%. The reference interval was determined to be 457–2,282 nmol/L and the assay was compatible with multiple specimen collection tubes. Of 30 substances tested, only two exhibited the potential for assay interference. Moreover, the LDL-P results from samples run on two NMR platforms, Vantera Clinical Analyzer and NMR Profiler, showed excellent correlation.
The authors concluded that the successful development of a method to measure LDL-P on a fully automated platform allows NMR technology dissemination into the routine, clinical laboratory setting and creates the opportunity for NMR-based testing across a broader range of clinical applications. They point out that, several leading national reference laboratories and large hospital system laboratories have successfully integrated the Vantera into their clinical laboratory operations. The study was published on July 28, 2014, in the journal Clinical Biochemistry.
Related Links:
LipoScience Inc.
Mayo Clinic
Bruker Bio-Spin
NMR-measured low-density lipoprotein particle number (LDL-P) has been shown to be more strongly associated with cardiovascular disease outcomes than LDL cholesterol (LDL-C) in individuals for whom these alternate measures of LDL are discordant.
Scientists at LipoScience Inc. (Raleigh, NC, USA) purchased serum pools and controls from Solomon Park Research Laboratories (Kirkland, WA, USA). Controls were prepared by identifying serum samples with high and low lipoprotein ranges. Additional serum pools were prepared in-house from donor subjects identified at LipoScience or Mayo Clinic (Rochester, MN, USA). NMR spectra were acquired on the NMR Profiler (Bruker Bio-Spin; Billerica, MA, USA) or the Vantera Clinical Analyzer (Agilent Technologies; Santa Clara, CA, USA), both equipped with 400 MHz 1H NMR spectrometers.
The sensitivity and linearity were established within the range of 300–3,500 nmol/L. For serum pools containing low, medium and high levels of LDL-P, the inter-assay, intra-assay precision and repeatability gave coefficients of variation (CVs) between 2.6 and 5.8%. The reference interval was determined to be 457–2,282 nmol/L and the assay was compatible with multiple specimen collection tubes. Of 30 substances tested, only two exhibited the potential for assay interference. Moreover, the LDL-P results from samples run on two NMR platforms, Vantera Clinical Analyzer and NMR Profiler, showed excellent correlation.
The authors concluded that the successful development of a method to measure LDL-P on a fully automated platform allows NMR technology dissemination into the routine, clinical laboratory setting and creates the opportunity for NMR-based testing across a broader range of clinical applications. They point out that, several leading national reference laboratories and large hospital system laboratories have successfully integrated the Vantera into their clinical laboratory operations. The study was published on July 28, 2014, in the journal Clinical Biochemistry.
Related Links:
LipoScience Inc.
Mayo Clinic
Bruker Bio-Spin
Latest Clinical Chem. News
- Chemical Imaging Probe Could Track and Treat Prostate Cancer
- Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
- VOCs Show Promise for Early Multi-Cancer Detection
- Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
- Prostate Cancer Markers Based on Chemical Make-Up of Calcifications to Speed Up Detection
- Breath Test Could Help Detect Blood Cancers
- ML-Powered Gas Sensors to Detect Pathogens and AMR at POC
- Saliva-Based Cancer Detection Technology Eliminates Need for Complex Sample Preparation
- Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs

- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Channels
Molecular Diagnostics
view channel
New Genetic Test Enables Faster Diagnosis of Rare Diseases
Rare disease diagnosis often involves a long and uncertain search for the underlying genetic cause. Traditional testing requires multiple separate analyses, although many patients remain without answers.... Read more
Urine Test Detects Inherited Neuropathy Missed by Genetic Screening
Sorbitol dehydrogenase (SORD)-related neuropathy is one of the most common inherited nerve disorders, yet diagnosis often lags because current genetic screens frequently miss the causal gene.... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
Chronic obstructive pulmonary disease (COPD) remains a major contributor to global illness, largely driven by cigarette smoking and marked by irreversible lung damage. Acute exacerbations can accelerate... Read more
AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
Myelin oligodendrocyte glycoprotein antibody–associated disease (MOGAD) is a rare autoimmune disorder in which the immune system attacks the myelin sheath in the central nervous system. Although symptoms... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








