Whole Blood DNA Extraction Methods Compared
|
By LabMedica International staff writers Posted on 14 Aug 2014 |
In the clinical laboratory, nucleic acids are routinely isolated from various types of specimen, including blood, sputum, cerebrospinal fluid, stool, urine, buccal swabs, and respiratory specimens, for use in a wide array of molecular diagnostic tests.
Both the quality and quantity of the extracted nucleic acids are crucial to the successful implementation of downstream molecular diagnostic procedures, including polymerase chain reaction (PCR), quantitative PCR, microarray analyses, and direct sequencing.
Laboratory scientists at the Asian Medical Center (Seoul, Republic of Korea) collected blood samples from five healthy donors and all DNA extraction processes were performed within six hours of specimen collection. The team evaluated the efficiency of three extraction methods by comparison based on the total amount of extracted DNA adjusted by input blood volume, and the purity of the extract. Polymerase chain reaction analyses were performed using the Actin Beta gene (ACTB) as a target. The real-time PCR assay was carried out for housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Total elapsed time for DNA extraction was compared.
The three extraction methods were the Nextractor NX-48 system, (Genolution; Seoul, Republic of Korea); the manual QIAamp DNA Blood Mini Kit (Qiagen; Valencia, CA, USA), and the automated Maxwell system method (Promega; Madison, WI, USA). Following DNA extraction, the optical density of each sample was read at 260 nm and 280 nm using a NanoDrop ND-2000c spectrophotometer (Thermo Scientific; Wilmington, DE, USA). Real-time PCR was run on a SmartCycler system (Cepheid; Sunnyvale, CA, USA).
Extraction efficiencies for the QIAamp was 25.4 ± 3.8 ng/μL, for the Maxwell it was 9.2 ± 0.6 ng/μL, and the Nextractor system was the most efficient at 31.0 ± 5.6 ng/μL. No significant differences in purity were observed among three methods. DNA extracted using the ACTB was successfully amplified in all three methods. There were no obvious differences in cycle threshold (Ct) values for GAPDH real-time PCR. Total elapsed time for DNA extraction was about 50 minutes for the QIAamp, 40 minutes for the Maxwell, and 20 minutes for the Nextractor.
The authors concluded that both the purity and yield of the Nextractor system were similar to that of manual extraction. The relative speed and low hands-on time represent clear benefits over manual processes. Therefore, the Nextractor system represents a useful alternative to manual DNA extraction in clinical laboratories that is suitable for many downstream molecular diagnostic applications. The study was published in the August 2014 issue of the journal Clinica Chimica Acta.
Related Links:
Asian Medical Center
Genolution
Cepheid
Both the quality and quantity of the extracted nucleic acids are crucial to the successful implementation of downstream molecular diagnostic procedures, including polymerase chain reaction (PCR), quantitative PCR, microarray analyses, and direct sequencing.
Laboratory scientists at the Asian Medical Center (Seoul, Republic of Korea) collected blood samples from five healthy donors and all DNA extraction processes were performed within six hours of specimen collection. The team evaluated the efficiency of three extraction methods by comparison based on the total amount of extracted DNA adjusted by input blood volume, and the purity of the extract. Polymerase chain reaction analyses were performed using the Actin Beta gene (ACTB) as a target. The real-time PCR assay was carried out for housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Total elapsed time for DNA extraction was compared.
The three extraction methods were the Nextractor NX-48 system, (Genolution; Seoul, Republic of Korea); the manual QIAamp DNA Blood Mini Kit (Qiagen; Valencia, CA, USA), and the automated Maxwell system method (Promega; Madison, WI, USA). Following DNA extraction, the optical density of each sample was read at 260 nm and 280 nm using a NanoDrop ND-2000c spectrophotometer (Thermo Scientific; Wilmington, DE, USA). Real-time PCR was run on a SmartCycler system (Cepheid; Sunnyvale, CA, USA).
Extraction efficiencies for the QIAamp was 25.4 ± 3.8 ng/μL, for the Maxwell it was 9.2 ± 0.6 ng/μL, and the Nextractor system was the most efficient at 31.0 ± 5.6 ng/μL. No significant differences in purity were observed among three methods. DNA extracted using the ACTB was successfully amplified in all three methods. There were no obvious differences in cycle threshold (Ct) values for GAPDH real-time PCR. Total elapsed time for DNA extraction was about 50 minutes for the QIAamp, 40 minutes for the Maxwell, and 20 minutes for the Nextractor.
The authors concluded that both the purity and yield of the Nextractor system were similar to that of manual extraction. The relative speed and low hands-on time represent clear benefits over manual processes. Therefore, the Nextractor system represents a useful alternative to manual DNA extraction in clinical laboratories that is suitable for many downstream molecular diagnostic applications. The study was published in the August 2014 issue of the journal Clinica Chimica Acta.
Related Links:
Asian Medical Center
Genolution
Cepheid
Read the full article by registering today, it's FREE!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
- Free digital version edition of LabMedica International sent by email on regular basis
- Free print version of LabMedica International magazine (available only outside USA and Canada).
- Free and unlimited access to back issues of LabMedica International in digital format
- Free LabMedica International Newsletter sent every week containing the latest news
- Free breaking news sent via email
- Free access to Events Calendar
- Free access to LinkXpress new product services
- REGISTRATION IS FREE AND EASY!
Sign in: Registered website members
Sign in: Registered magazine subscribers
Latest Molecular Diagnostics News
- Sepsis Test Demonstrates Strong Performance in Post-Cardiac Surgery Patients
- Next-Gen Automated ELISA System Elevates Laboratory Performance
- Blood Test Combined with MRI Brain Scans Reveals Two Distinct Multiple Sclerosis Types
- At-Home Blood Tests Accurately Detect Key Alzheimer's Biomarkers
- Ultra-Sensitive Blood Biomarkers Enable Population-Scale Insights into Alzheimer’s Pathology
- Blood Test Could Predict Death Risk in World’s Most Common Inherited Heart Disease
- Rapid POC Hepatitis C Test Provides Results Within One Hour
- New Biomarkers Predict Disease Severity in Children with RSV Bronchiolitis
- CTC Measurement Blood Test Guides Treatment Decisions in Metastatic Breast Cancer Subtype
- Multiplex Antibody Assay Could Transform Hepatitis B Immunity Testing
- Genetic Testing Improves Comprehensive Risk-Based Screening for Breast Cancer
- Urine Test Could Reveal Real Age and Life Span
- Genomic Test Identifies African Americans at Risk for Early Prostate Cancer Recurrence
- Blood Test Could Identify Biomarker Signature of Cerebral Malaria
- World’s First Biomarker Blood Test to Assess MS Progression
- Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
Deep Learning–Based Method Improves Cancer Diagnosis
Identifying vascular invasion is critical for determining how aggressive a cancer is, yet doing so reliably can be difficult using standard pathology workflows. Conventional methods require multiple chemical... Read more
ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
Urine drug testing plays a critical role in the emergency department, particularly for patients presenting with suspected overdose or altered mental status. Accurate and timely results can directly influence... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more








