Whole Blood DNA Extraction Methods Compared
By LabMedica International staff writers Posted on 14 Aug 2014 |
In the clinical laboratory, nucleic acids are routinely isolated from various types of specimen, including blood, sputum, cerebrospinal fluid, stool, urine, buccal swabs, and respiratory specimens, for use in a wide array of molecular diagnostic tests.
Both the quality and quantity of the extracted nucleic acids are crucial to the successful implementation of downstream molecular diagnostic procedures, including polymerase chain reaction (PCR), quantitative PCR, microarray analyses, and direct sequencing.
Laboratory scientists at the Asian Medical Center (Seoul, Republic of Korea) collected blood samples from five healthy donors and all DNA extraction processes were performed within six hours of specimen collection. The team evaluated the efficiency of three extraction methods by comparison based on the total amount of extracted DNA adjusted by input blood volume, and the purity of the extract. Polymerase chain reaction analyses were performed using the Actin Beta gene (ACTB) as a target. The real-time PCR assay was carried out for housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Total elapsed time for DNA extraction was compared.
The three extraction methods were the Nextractor NX-48 system, (Genolution; Seoul, Republic of Korea); the manual QIAamp DNA Blood Mini Kit (Qiagen; Valencia, CA, USA), and the automated Maxwell system method (Promega; Madison, WI, USA). Following DNA extraction, the optical density of each sample was read at 260 nm and 280 nm using a NanoDrop ND-2000c spectrophotometer (Thermo Scientific; Wilmington, DE, USA). Real-time PCR was run on a SmartCycler system (Cepheid; Sunnyvale, CA, USA).
Extraction efficiencies for the QIAamp was 25.4 ± 3.8 ng/μL, for the Maxwell it was 9.2 ± 0.6 ng/μL, and the Nextractor system was the most efficient at 31.0 ± 5.6 ng/μL. No significant differences in purity were observed among three methods. DNA extracted using the ACTB was successfully amplified in all three methods. There were no obvious differences in cycle threshold (Ct) values for GAPDH real-time PCR. Total elapsed time for DNA extraction was about 50 minutes for the QIAamp, 40 minutes for the Maxwell, and 20 minutes for the Nextractor.
The authors concluded that both the purity and yield of the Nextractor system were similar to that of manual extraction. The relative speed and low hands-on time represent clear benefits over manual processes. Therefore, the Nextractor system represents a useful alternative to manual DNA extraction in clinical laboratories that is suitable for many downstream molecular diagnostic applications. The study was published in the August 2014 issue of the journal Clinica Chimica Acta.
Related Links:
Asian Medical Center
Genolution
Cepheid
Both the quality and quantity of the extracted nucleic acids are crucial to the successful implementation of downstream molecular diagnostic procedures, including polymerase chain reaction (PCR), quantitative PCR, microarray analyses, and direct sequencing.
Laboratory scientists at the Asian Medical Center (Seoul, Republic of Korea) collected blood samples from five healthy donors and all DNA extraction processes were performed within six hours of specimen collection. The team evaluated the efficiency of three extraction methods by comparison based on the total amount of extracted DNA adjusted by input blood volume, and the purity of the extract. Polymerase chain reaction analyses were performed using the Actin Beta gene (ACTB) as a target. The real-time PCR assay was carried out for housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Total elapsed time for DNA extraction was compared.
The three extraction methods were the Nextractor NX-48 system, (Genolution; Seoul, Republic of Korea); the manual QIAamp DNA Blood Mini Kit (Qiagen; Valencia, CA, USA), and the automated Maxwell system method (Promega; Madison, WI, USA). Following DNA extraction, the optical density of each sample was read at 260 nm and 280 nm using a NanoDrop ND-2000c spectrophotometer (Thermo Scientific; Wilmington, DE, USA). Real-time PCR was run on a SmartCycler system (Cepheid; Sunnyvale, CA, USA).
Extraction efficiencies for the QIAamp was 25.4 ± 3.8 ng/μL, for the Maxwell it was 9.2 ± 0.6 ng/μL, and the Nextractor system was the most efficient at 31.0 ± 5.6 ng/μL. No significant differences in purity were observed among three methods. DNA extracted using the ACTB was successfully amplified in all three methods. There were no obvious differences in cycle threshold (Ct) values for GAPDH real-time PCR. Total elapsed time for DNA extraction was about 50 minutes for the QIAamp, 40 minutes for the Maxwell, and 20 minutes for the Nextractor.
The authors concluded that both the purity and yield of the Nextractor system were similar to that of manual extraction. The relative speed and low hands-on time represent clear benefits over manual processes. Therefore, the Nextractor system represents a useful alternative to manual DNA extraction in clinical laboratories that is suitable for many downstream molecular diagnostic applications. The study was published in the August 2014 issue of the journal Clinica Chimica Acta.
Related Links:
Asian Medical Center
Genolution
Cepheid
Read the full article by registering today, it's FREE!

Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
- Free digital version edition of LabMedica International sent by email on regular basis
- Free print version of LabMedica International magazine (available only outside USA and Canada).
- Free and unlimited access to back issues of LabMedica International in digital format
- Free LabMedica International Newsletter sent every week containing the latest news
- Free breaking news sent via email
- Free access to Events Calendar
- Free access to LinkXpress new product services
- REGISTRATION IS FREE AND EASY!

Sign in: Registered website members
Sign in: Registered magazine subscribers
Latest Molecular Diagnostics News
- Newly-Cleared Technology a Game Changer for Diagnosis of Lyme Disease
- Innovative Liquid Biopsy Test Uses RNA to Detect Early-Stage Cancer
- Rapid Tests for Chagas Disease Improves Diagnostic Access
- Simple Blood Test to Predict Alzheimer’s Clinical Progression in Earliest Stages
- Saliva Test Could Identify People Genetically Susceptible to Type 2 Diabetes
- Pioneering Analyzer with Advanced Biochip Technology Sets New Standard in Lab Diagnostics
- RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
- New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
- Injury Molecular Fingerprint Enables Real-Time Diagnostics for On-Site Treatment
- Blood Test Could Predict Likelihood of Breast Cancer Spreading to The Bone
- New Infectious Disease Analytics Platform Speeds Up Clinical Decision-Making at POC
- Genetic Test Could Predict Poor Outcomes in Lung Transplant Patients
- Breakthrough Blood Test Enables Early Pancreatic Cancer Detection
- Genomic Testing in NICU Reduces Missed Diagnoses
- New Genetic Test Improves Diabetes Prediction and Classification
- New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
World’s First Clinical Test Predicts Best Rheumatoid Arthritis Treatment
Rheumatoid arthritis (RA) is a chronic condition affecting 1 in 100 people in the UK today, causing the immune system to attack its joints. Unlike osteoarthritis, which is caused by wear and tear, RA can... Read more
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreTechnology
view channel
Low-Cost Biosensing Technology Detects Disease Biomarkers in Minutes
Rapid at-home tests for diseases like COVID-19 have become increasingly popular for their convenience, but they come with a major drawback: they are less sensitive than the tests performed in medical settings.... Read more
AI Tool Could Help Identify Specific Gut Bacterial Targets for Treatment of Diseases
The human body hosts trillions of bacteria, particularly in the gut, which have a significant role in digestion and various other aspects of health. These gut bacteria produce a variety of metabolites... Read moreIndustry
view channel
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more