Whole Blood DNA Extraction Methods Compared
|
By LabMedica International staff writers Posted on 14 Aug 2014 |
In the clinical laboratory, nucleic acids are routinely isolated from various types of specimen, including blood, sputum, cerebrospinal fluid, stool, urine, buccal swabs, and respiratory specimens, for use in a wide array of molecular diagnostic tests.
Both the quality and quantity of the extracted nucleic acids are crucial to the successful implementation of downstream molecular diagnostic procedures, including polymerase chain reaction (PCR), quantitative PCR, microarray analyses, and direct sequencing.
Laboratory scientists at the Asian Medical Center (Seoul, Republic of Korea) collected blood samples from five healthy donors and all DNA extraction processes were performed within six hours of specimen collection. The team evaluated the efficiency of three extraction methods by comparison based on the total amount of extracted DNA adjusted by input blood volume, and the purity of the extract. Polymerase chain reaction analyses were performed using the Actin Beta gene (ACTB) as a target. The real-time PCR assay was carried out for housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Total elapsed time for DNA extraction was compared.
The three extraction methods were the Nextractor NX-48 system, (Genolution; Seoul, Republic of Korea); the manual QIAamp DNA Blood Mini Kit (Qiagen; Valencia, CA, USA), and the automated Maxwell system method (Promega; Madison, WI, USA). Following DNA extraction, the optical density of each sample was read at 260 nm and 280 nm using a NanoDrop ND-2000c spectrophotometer (Thermo Scientific; Wilmington, DE, USA). Real-time PCR was run on a SmartCycler system (Cepheid; Sunnyvale, CA, USA).
Extraction efficiencies for the QIAamp was 25.4 ± 3.8 ng/μL, for the Maxwell it was 9.2 ± 0.6 ng/μL, and the Nextractor system was the most efficient at 31.0 ± 5.6 ng/μL. No significant differences in purity were observed among three methods. DNA extracted using the ACTB was successfully amplified in all three methods. There were no obvious differences in cycle threshold (Ct) values for GAPDH real-time PCR. Total elapsed time for DNA extraction was about 50 minutes for the QIAamp, 40 minutes for the Maxwell, and 20 minutes for the Nextractor.
The authors concluded that both the purity and yield of the Nextractor system were similar to that of manual extraction. The relative speed and low hands-on time represent clear benefits over manual processes. Therefore, the Nextractor system represents a useful alternative to manual DNA extraction in clinical laboratories that is suitable for many downstream molecular diagnostic applications. The study was published in the August 2014 issue of the journal Clinica Chimica Acta.
Related Links:
Asian Medical Center
Genolution
Cepheid
Both the quality and quantity of the extracted nucleic acids are crucial to the successful implementation of downstream molecular diagnostic procedures, including polymerase chain reaction (PCR), quantitative PCR, microarray analyses, and direct sequencing.
Laboratory scientists at the Asian Medical Center (Seoul, Republic of Korea) collected blood samples from five healthy donors and all DNA extraction processes were performed within six hours of specimen collection. The team evaluated the efficiency of three extraction methods by comparison based on the total amount of extracted DNA adjusted by input blood volume, and the purity of the extract. Polymerase chain reaction analyses were performed using the Actin Beta gene (ACTB) as a target. The real-time PCR assay was carried out for housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Total elapsed time for DNA extraction was compared.
The three extraction methods were the Nextractor NX-48 system, (Genolution; Seoul, Republic of Korea); the manual QIAamp DNA Blood Mini Kit (Qiagen; Valencia, CA, USA), and the automated Maxwell system method (Promega; Madison, WI, USA). Following DNA extraction, the optical density of each sample was read at 260 nm and 280 nm using a NanoDrop ND-2000c spectrophotometer (Thermo Scientific; Wilmington, DE, USA). Real-time PCR was run on a SmartCycler system (Cepheid; Sunnyvale, CA, USA).
Extraction efficiencies for the QIAamp was 25.4 ± 3.8 ng/μL, for the Maxwell it was 9.2 ± 0.6 ng/μL, and the Nextractor system was the most efficient at 31.0 ± 5.6 ng/μL. No significant differences in purity were observed among three methods. DNA extracted using the ACTB was successfully amplified in all three methods. There were no obvious differences in cycle threshold (Ct) values for GAPDH real-time PCR. Total elapsed time for DNA extraction was about 50 minutes for the QIAamp, 40 minutes for the Maxwell, and 20 minutes for the Nextractor.
The authors concluded that both the purity and yield of the Nextractor system were similar to that of manual extraction. The relative speed and low hands-on time represent clear benefits over manual processes. Therefore, the Nextractor system represents a useful alternative to manual DNA extraction in clinical laboratories that is suitable for many downstream molecular diagnostic applications. The study was published in the August 2014 issue of the journal Clinica Chimica Acta.
Related Links:
Asian Medical Center
Genolution
Cepheid
Read the full article by registering today, it's FREE!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
- Free digital version edition of LabMedica International sent by email on regular basis
- Free print version of LabMedica International magazine (available only outside USA and Canada).
- Free and unlimited access to back issues of LabMedica International in digital format
- Free LabMedica International Newsletter sent every week containing the latest news
- Free breaking news sent via email
- Free access to Events Calendar
- Free access to LinkXpress new product services
- REGISTRATION IS FREE AND EASY!
Sign in: Registered website members
Sign in: Registered magazine subscribers
Latest Molecular Diagnostics News
- New DNA Test Tracks Spread of Parasitic Disease from Single Sample
- Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
- Genetic Testing Trifecta Predicts Risk of Sudden Cardiac Death and Arrhythmia
- Maternal Blood Test Detects Pre-Eclampsia Risk Before Symptoms Develop
- Blood Test Could Assess Concussion Severity in Teenagers with TBI
- Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
- New Biomarker Panel to Improve Heart Failure Diagnosis in Women
- Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
- Automated Test Distinguishes Dengue from Acute Fever-Causing Illnesses In 18 Minutes
- High-Sensitivity Troponin I Assay Aids in Diagnosis of Myocardial Infarction
- Fast Low-Cost Alzheimer’s Tests Could Detect Disease in Early and Silent Stages
- Further Investigation of FISH-Negative Tests for Renal Cell Carcinoma Improves Diagnostic Accuracy
- First Direct Measurement of Dementia-Linked Proteins to Enable Early Alzheimer’s Detection
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
- Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
- New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more







 Analyzer.jpg)

