Microfluidics Device Captures and Isolates Slow Growing Gut Bacteria
|
By LabMedica International staff writers Posted on 15 Jul 2014 |

Image: Glass SlipChip for growing microbes, shown next to a US quarter dollar coin (left); fluorescent in situ hybridization image of the target organism (right, top); transmission electron microscopy image of a single cell of the target organism (right, bottom) (Photo courtesy of the California Institute of Technology).
Microbiologists have used a novel "lab-on-a-chip" approach to isolate and cultivate fastidious, slow growing bacteria from the human digestive tract.
The majority of microbes that comprises the human gut biome have not been cultured, due in part to the difficulties of both identifying proper growth conditions and characterizing and isolating each species.
Investigators at the California Institute of Technology (Pasadena, USA) developed a microfluidics-based, genetically targeted approach to overcome these problems. Their "SlipChip" device was constructed from two glass slides, each the size of a credit card, that were etched with tiny grooves that became channels when the grooved surfaces were stacked atop one another. When a sample, such as a mixed assortment of bacterial species from a colonoscopy biopsy, was applied to the device, the interconnected channels of the top chip turned the channels into individual wells, with each well ideally holding a single microbe. Once sequestered in an isolated well, each individual bacterium was able to divide and grow without having to compete for resources with other types of faster-growing microbes.
The beauty of the system was that each well could be divided into two compartments. One compartment was used for DNA sequencing and mapping studies while the other maintained a living example of the microbe for further culture and study.
The investigators validated this approach by cultivating a bacterium from a human cecal biopsy. Genetic mapping of the organism showed that it was a representative of a previously unidentified genus of the Ruminococcaceae family and that its genetic signature was listed among the high-priority group of the [US] National Institutes of Health's Human Microbiome Project’s "Most Wanted" list.
"Although a genomic sequence of the new organism is a useful tool, further studies are needed to learn how this species of microbe is involved in human health," said senior author Dr. Rustem Ismagilov, professor of chemistry and chemical engineering at the California Institute of Technology.
The study was published in the June 25, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
California Institute of Technology
The majority of microbes that comprises the human gut biome have not been cultured, due in part to the difficulties of both identifying proper growth conditions and characterizing and isolating each species.
Investigators at the California Institute of Technology (Pasadena, USA) developed a microfluidics-based, genetically targeted approach to overcome these problems. Their "SlipChip" device was constructed from two glass slides, each the size of a credit card, that were etched with tiny grooves that became channels when the grooved surfaces were stacked atop one another. When a sample, such as a mixed assortment of bacterial species from a colonoscopy biopsy, was applied to the device, the interconnected channels of the top chip turned the channels into individual wells, with each well ideally holding a single microbe. Once sequestered in an isolated well, each individual bacterium was able to divide and grow without having to compete for resources with other types of faster-growing microbes.
The beauty of the system was that each well could be divided into two compartments. One compartment was used for DNA sequencing and mapping studies while the other maintained a living example of the microbe for further culture and study.
The investigators validated this approach by cultivating a bacterium from a human cecal biopsy. Genetic mapping of the organism showed that it was a representative of a previously unidentified genus of the Ruminococcaceae family and that its genetic signature was listed among the high-priority group of the [US] National Institutes of Health's Human Microbiome Project’s "Most Wanted" list.
"Although a genomic sequence of the new organism is a useful tool, further studies are needed to learn how this species of microbe is involved in human health," said senior author Dr. Rustem Ismagilov, professor of chemistry and chemical engineering at the California Institute of Technology.
The study was published in the June 25, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
California Institute of Technology
Latest Microbiology News
- Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Blood Test Enables Non-Invasive Endometriosis Detection
Endometriosis is a chronic, complex, yet relatively common gynecological disorder, reportedly affecting 1 in 10 adult and adolescent women. Endometriosis causes tissue similar to the lining of the uterus... Read more
New Blood Biomarkers Help Diagnose Pregnancy-Linked Liver Complication
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disorder linked to pregnancy and can pose serious risks for both mother and baby, including premature delivery and stillbirth.... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read morePathology
view channel
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read more
Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
Blood-based tests for Alzheimer’s disease are transforming diagnosis by offering a simpler alternative to spinal taps and brain imaging. However, many people evaluated at memory clinics also live with... Read more
Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
Chronic liver disease affects millions worldwide and can progress silently to hepatocellular carcinoma (HCC), one of the deadliest cancers globally. While surveillance guidelines exist for patients with... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








