We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microfluidics Device Captures and Isolates Slow Growing Gut Bacteria

By LabMedica International staff writers
Posted on 15 Jul 2014
Print article
Image: Glass SlipChip for growing microbes, shown next to a US quarter dollar coin (left); fluorescent in situ hybridization image of the target organism (right, top); transmission electron microscopy image of a single cell of the target organism (right, bottom) (Photo courtesy of the California Institute of Technology).
Image: Glass SlipChip for growing microbes, shown next to a US quarter dollar coin (left); fluorescent in situ hybridization image of the target organism (right, top); transmission electron microscopy image of a single cell of the target organism (right, bottom) (Photo courtesy of the California Institute of Technology).
Microbiologists have used a novel "lab-on-a-chip" approach to isolate and cultivate fastidious, slow growing bacteria from the human digestive tract.

The majority of microbes that comprises the human gut biome have not been cultured, due in part to the difficulties of both identifying proper growth conditions and characterizing and isolating each species.

Investigators at the California Institute of Technology (Pasadena, USA) developed a microfluidics-based, genetically targeted approach to overcome these problems. Their "SlipChip" device was constructed from two glass slides, each the size of a credit card, that were etched with tiny grooves that became channels when the grooved surfaces were stacked atop one another. When a sample, such as a mixed assortment of bacterial species from a colonoscopy biopsy, was applied to the device, the interconnected channels of the top chip turned the channels into individual wells, with each well ideally holding a single microbe. Once sequestered in an isolated well, each individual bacterium was able to divide and grow without having to compete for resources with other types of faster-growing microbes.

The beauty of the system was that each well could be divided into two compartments. One compartment was used for DNA sequencing and mapping studies while the other maintained a living example of the microbe for further culture and study.

The investigators validated this approach by cultivating a bacterium from a human cecal biopsy. Genetic mapping of the organism showed that it was a representative of a previously unidentified genus of the Ruminococcaceae family and that its genetic signature was listed among the high-priority group of the [US] National Institutes of Health's Human Microbiome Project’s "Most Wanted" list.

"Although a genomic sequence of the new organism is a useful tool, further studies are needed to learn how this species of microbe is involved in human health," said senior author Dr. Rustem Ismagilov, professor of chemistry and chemical engineering at the California Institute of Technology.

The study was published in the June 25, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

California Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more