We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Solution Found for Mislabeled Specimens in Clinical Laboratories

By LabMedica International staff writers
Posted on 30 Apr 2014
Print article
Image: An automated camera system developed for photographing specimen tube exteriors for vision processing and optical character recognition analysis to detect possible mislabeled specimens (Photo courtesy of ARUP laboratories).
Image: An automated camera system developed for photographing specimen tube exteriors for vision processing and optical character recognition analysis to detect possible mislabeled specimens (Photo courtesy of ARUP laboratories).
The incidence of patient identification errors, including mislabeled and misidentified specimens, is thought to be unacceptably high in clinical laboratories.

The best data on errors in USA laboratories is derived from three separate College of American Pathologists (CAP; Northfield, IL, USA) Q-Probe studies, in which the reported rates of mislabeled specimens were 0.39/1,000 in 120 institutions in 2006, 0.92/1,000 in 147 clinical laboratories in 2008, and 1.12% of blood bank specimens in 122 clinical laboratories.

Laboratory scientists at the ARUP Laboratories (Salt Lake City, UT, USA) have examined the problem of misidentification and have suggested some possible solutions. One approach is the single piece flow and this concept has significant error-proofing potential for labeling tasks at relatively low cost. They suggest that to prevent errors during collection and processing, avoid having specimens from multiple patients in the active work area at the same time. Similarly, avoid using strips of labels from a label printer with labels for multiple patients that must be matched to specimens and if using an automated aliquoting device, be sure that the label exactly duplicates the barcode label from the primary tube to facilitate error detection.

Another tool that more laboratories are using is the portable barcode scanner. These scanners read wristband barcodes at point-of-collection and work well in conjunction with portable barcode label printers or point-of-care analytical devices. However, barcode devices make more errors than commonly believed. Display and layout inconsistency of the barcode can also leads to an increase in errors. It is recommended to implement the Clinical and Laboratory Standards Institute (Wayne, PA, USA) Standard AUTO12-A, Specimen Labels: Content and Location, Fonts, and Label Orientation.

The scientists have invented one high tech solution that they believe will bring their own error rate for mislabeled specimens to near zero and which, with further refinement, may become suitable for use on commercial automation systems. This is a robotic camera system that can lift a specimen tube from the transport carrier on an automated track, take four simultaneous photographs of the tube using four equidistantly spaced high resolution cameras, and precisely stitch the four photographs into a single photograph of the entire exterior of the tube. It then uses optical character recognition (OCR) to compare the patient name on the original label to the patient name in the laboratory information system (LIS), as identified by reading the barcode on the LIS label.

Since the robotic system was implemented in October 2012, the system has collected and analyzed some 2.4 million images and more than 300 mislabeled specimens have been detected, of which only 53% were found through our normal quality assurance processes. For the subset of specimens routed through this advanced automation, significantly fewer corrected reports have been issued.

Related Links:
College of American Pathologists
ARUP Laboratories 
Clinical and Laboratory Standards Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more