Cause of the Most Devastating Pandemics in History Revealed
|
By LabMedica International staff writers Posted on 04 Feb 2014 |

Image: Tooth of one of the plague victims buried in Bavaria (Photo courtesy of McMaster University).
A new study reveals that two of the world's most devastating pandemics, the plague of Justinian and the Black Death, were caused by distinct strains of the same pathogen.
Researchers at McMaster University (Hamilton, ON, Canada), Northern Arizona University (Flagstaff, USA), the University of Sydney (Australia), and other institutions isolated miniscule DNA fragments from the 1,500 year old teeth of two victims of the Justinian plague, who were buried in the Aschheim-Bajuwarenring cemetery (Bavaria, Germany); these are the oldest pathogen genomes obtained to date. Using these short fragments, the researchers reconstructed the genome of the bacterium responsible, and compared it to a database of genomes of more than a hundred contemporary strains.
The results showed that the bacterium was a strain of Yersinia pestis, the same pathogen responsible for the Black Death. But while the strain responsible for the Justinian outbreak was an evolutionary “dead-end” and faded out on its own, the other, likely a descendant of the Black Death strain, lead to another worldwide pandemic spreading from Hong Kong across the globe in the late 1800’s. According to the researchers, these findings suggest a new strain of plague could emerge again in humans in the future. The study was published online on January 28, 2014, in the Lancet Infectious Diseases.
“About 200 rodent species carry the plague and could potentially infect other animals or humans. Scientists need to sharpen their surveillance of plague in rodent populations to try averting future human infections,” said lead author Associate Professor Hendrik Poinar, PhD, director of the McMaster Ancient DNA Center. “If we happen to see a massive die-off of rodents somewhere, then it would become alarming. Plague is something that will continue to happen, but modern-day antibiotics should be able to stop it.”
The Plague of Justinian struck in the sixth century and it is estimated to have killed between 30 and 50 million people—virtually half the world's population—as it spread across Asia, North Africa, The Arabian peninsula, and Europe. The Black Death struck some 800 years later with similar force, killing 50 million Europeans in just four years (1347-1351).
Related Links:
McMaster University
Northern Arizona University
University of Sydney
Researchers at McMaster University (Hamilton, ON, Canada), Northern Arizona University (Flagstaff, USA), the University of Sydney (Australia), and other institutions isolated miniscule DNA fragments from the 1,500 year old teeth of two victims of the Justinian plague, who were buried in the Aschheim-Bajuwarenring cemetery (Bavaria, Germany); these are the oldest pathogen genomes obtained to date. Using these short fragments, the researchers reconstructed the genome of the bacterium responsible, and compared it to a database of genomes of more than a hundred contemporary strains.
The results showed that the bacterium was a strain of Yersinia pestis, the same pathogen responsible for the Black Death. But while the strain responsible for the Justinian outbreak was an evolutionary “dead-end” and faded out on its own, the other, likely a descendant of the Black Death strain, lead to another worldwide pandemic spreading from Hong Kong across the globe in the late 1800’s. According to the researchers, these findings suggest a new strain of plague could emerge again in humans in the future. The study was published online on January 28, 2014, in the Lancet Infectious Diseases.
“About 200 rodent species carry the plague and could potentially infect other animals or humans. Scientists need to sharpen their surveillance of plague in rodent populations to try averting future human infections,” said lead author Associate Professor Hendrik Poinar, PhD, director of the McMaster Ancient DNA Center. “If we happen to see a massive die-off of rodents somewhere, then it would become alarming. Plague is something that will continue to happen, but modern-day antibiotics should be able to stop it.”
The Plague of Justinian struck in the sixth century and it is estimated to have killed between 30 and 50 million people—virtually half the world's population—as it spread across Asia, North Africa, The Arabian peninsula, and Europe. The Black Death struck some 800 years later with similar force, killing 50 million Europeans in just four years (1347-1351).
Related Links:
McMaster University
Northern Arizona University
University of Sydney
Latest Microbiology News
- AI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
- New Test Measures How Effectively Antibiotics Kill Bacteria
- New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
- New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
- Breakthroughs in Microbial Analysis to Enhance Disease Prediction
- Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
Primary central nervous system lymphoma (PCNSL) is typically diagnosed through surgical biopsy, which remains the gold standard but carries substantial risk. Operability depends heavily on tumor location,... Read more
New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
Acute myeloid leukemia (AML) is one of the most aggressive blood cancers, marked by poor survival rates and limited treatment options, especially in patients who do not respond to standard therapies.... Read moreHematology
view channel
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
Accurately identifying genetic mutations is central to cancer diagnostics and genomic research, but current methods struggle with complex sequencing data and limited clinical samples. Tumor analysis often... Read more
Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
Transthyretin amyloidosis (ATTR) is a rare, progressive, and highly aggressive disease caused by the misfolding of a specific protein that accumulates as toxic amyloid filaments in multiple organs.... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







