New System Breaks Technology and Cost Barriers for High-Throughput Large-Genome Sequencing
|
By LabMedica International staff writers Posted on 28 Jan 2014 |

Image: The HiSeq X Ten, composed of 10 HiSeq X Systems, breaks the USD 1000 barrier for a 30x human genome, enabling population-scale projects on genotypic variation to understand and improve human health (Photo courtesy of Illumina).
A new DNA sequencing system utilizes advanced design features to generate massive throughput and enable the world's first USD 1000 human genome sequence.
This achievement has been reached with the new HiSeq X Ten Sequencing System from Illumina (San Diego, CA, USA). The platform includes technology breakthroughs that enable researchers to undertake population and disease studies of unprecedented scale by providing the throughput to sequence tens of thousands of human whole genomes in a single year in a single lab. The HiSeq X Ten is the world’s first platform to deliver high quality, high-coverage human genome sequences for less than USD 1,000—inclusive of typical instrument depreciation, DNA extraction, library preparation, and estimated labor.
Purpose-built for population-scale human whole genome sequencing, the HiSeq X Ten is a platform especially suitable for scientists and institutions focused on the discovery of genotypic variation to enable a deeper understanding of biology and disease. It can deliver a comprehensive catalog of human variation within and outside of coding regions. “The ability to explore the human genome on this scale will bring the study of cancer and complex diseases to a new level. Breaking the ‘sound barrier’ of human genetics not only pushes us through a psychological milestone, it enables projects of unprecedented scale. We are excited to see what lies on the other side,” said Jay Flatley, CEO, Illumina.
Building on the proven performance of Illumina sequencing-by-synthesis (SBS) technology, HiSeq X Ten utilizes a number of advanced design features to generate massive throughput. Patterned flow cells (which contain billions of nanowells at fixed locations) combined with a new clustering chemistry deliver a significant increase in data density (6 billion clusters per run). Using state-of-the art optics and faster chemistry, HiSeq X Ten can process sequencing flow cells more quickly than ever before – generating a 10x increase in daily throughput when compared to current HiSeq 2500 performance. The HiSeq X Ten is sold as a set of 10 or more ultra-high throughput sequencing systems, each generating up to 1.8 terabases (Tb) of sequencing data in less than 3 days or up to 600 gigabases (Gb) per day, per system.
Initial users of the transformative HiSeq X Ten System include Macrogen (Seoul, Republic of Korea) and its CLIA laboratory (Rockville, MD, USA), the Broad Institute (Cambridge, MA, USA), and the Garvan Institute of Medical Research (Sydney, Australia).
“The sequencing capacity and economies of scale of the HiSeq X Ten facility will also allow Garvan to accelerate the introduction of clinical genomics and next-generation medicine in Australia,” said Prof. John Mattick, Executive Director of the Garvan Institute of Medical Research.
Eric Lander, founding director of the Broad Institute and professor of biology at MIT, said, “The HiSeq X Ten should give us the ability to analyze complete genomic information from huge sample populations. Over the next few years, we have an opportunity to learn as much about the genetics of human disease as we have learned in the history of medicine.”
“Macrogen will deploy this groundbreaking technology to open a new era of large-scale, whole genome sequencing in our certified CLIA laboratory,” said Dr. Jeong-Sun Seo, Chairman of Macrogen; “Additionally, we will use the HiSeq X Ten to continue our collaboration with the Genomic Medicine Institute of Seoul National University focused on sequencing Asian populations in order to build a genomics database for use in medical research and healthcare applications.”
Related Links:
Illumina
This achievement has been reached with the new HiSeq X Ten Sequencing System from Illumina (San Diego, CA, USA). The platform includes technology breakthroughs that enable researchers to undertake population and disease studies of unprecedented scale by providing the throughput to sequence tens of thousands of human whole genomes in a single year in a single lab. The HiSeq X Ten is the world’s first platform to deliver high quality, high-coverage human genome sequences for less than USD 1,000—inclusive of typical instrument depreciation, DNA extraction, library preparation, and estimated labor.
Purpose-built for population-scale human whole genome sequencing, the HiSeq X Ten is a platform especially suitable for scientists and institutions focused on the discovery of genotypic variation to enable a deeper understanding of biology and disease. It can deliver a comprehensive catalog of human variation within and outside of coding regions. “The ability to explore the human genome on this scale will bring the study of cancer and complex diseases to a new level. Breaking the ‘sound barrier’ of human genetics not only pushes us through a psychological milestone, it enables projects of unprecedented scale. We are excited to see what lies on the other side,” said Jay Flatley, CEO, Illumina.
Building on the proven performance of Illumina sequencing-by-synthesis (SBS) technology, HiSeq X Ten utilizes a number of advanced design features to generate massive throughput. Patterned flow cells (which contain billions of nanowells at fixed locations) combined with a new clustering chemistry deliver a significant increase in data density (6 billion clusters per run). Using state-of-the art optics and faster chemistry, HiSeq X Ten can process sequencing flow cells more quickly than ever before – generating a 10x increase in daily throughput when compared to current HiSeq 2500 performance. The HiSeq X Ten is sold as a set of 10 or more ultra-high throughput sequencing systems, each generating up to 1.8 terabases (Tb) of sequencing data in less than 3 days or up to 600 gigabases (Gb) per day, per system.
Initial users of the transformative HiSeq X Ten System include Macrogen (Seoul, Republic of Korea) and its CLIA laboratory (Rockville, MD, USA), the Broad Institute (Cambridge, MA, USA), and the Garvan Institute of Medical Research (Sydney, Australia).
“The sequencing capacity and economies of scale of the HiSeq X Ten facility will also allow Garvan to accelerate the introduction of clinical genomics and next-generation medicine in Australia,” said Prof. John Mattick, Executive Director of the Garvan Institute of Medical Research.
Eric Lander, founding director of the Broad Institute and professor of biology at MIT, said, “The HiSeq X Ten should give us the ability to analyze complete genomic information from huge sample populations. Over the next few years, we have an opportunity to learn as much about the genetics of human disease as we have learned in the history of medicine.”
“Macrogen will deploy this groundbreaking technology to open a new era of large-scale, whole genome sequencing in our certified CLIA laboratory,” said Dr. Jeong-Sun Seo, Chairman of Macrogen; “Additionally, we will use the HiSeq X Ten to continue our collaboration with the Genomic Medicine Institute of Seoul National University focused on sequencing Asian populations in order to build a genomics database for use in medical research and healthcare applications.”
Related Links:
Illumina
Latest Technology News
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
Accurately identifying individuals at high risk of heart attack remains a major challenge, especially when traditional indicators like cholesterol and blood pressure appear normal. Elevated levels of three... Read more
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








