LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Metabolic Biomarker Identified for Diabetes Risk

By LabMedica International staff writers
Posted on 07 Oct 2013
Print article
Image: The ACQUITY UPLC System for ultra-performance liquid chromatography (Photo courtesy of Waters).
Image: The ACQUITY UPLC System for ultra-performance liquid chromatography (Photo courtesy of Waters).
Type 2 diabetes (T2D) is the most common form of diabetes and is associated with many complications, however, many individuals are unaware that they are at risk and do not change their lifestyle in time to avoid disease.

The metabolite 2-aminoadipic acid (2-AAA) has been identified as a biomarker for T2D diabetes risk and individuals with increased levels of 2-AAA had a much greater risk of developing diabetes than individuals with lower 2-AAA levels.

An international team of scientists collaborating with those at Massachusetts General Hospital (Boston, MA, USA) took plasma samples from two cohorts, and metabolite profiling was performed on samples from 1,937 attendees who were free of diabetes at baseline of whom 376 propensity-matched cases and controls and 1,561 randomly selected individuals.

The team employed methodology for profiling polar plasma metabolites using hydrophilic interaction (HILIC) and liquid chromatography-mass spectrometry (LC-MS). The data was acquired using ultra-performance liquid chromatography technology on an ACQUITY UPLC (Waters; Milford, MA, USA) coupled to a 5500 QTRAP triple quadrupole mass spectrometer (AB SCIEX; Redwood City, CA, USA).

Individuals with 2-AAA concentrations in the top quartile had greater than a four-fold risk of developing diabetes. Levels of 2-AAA were not well correlated with other metabolite biomarkers of diabetes, such as branched chain amino acids and aromatic amino acids, suggesting they reflect a distinct pathophysiological pathway.

The authors concluded that the application of a new metabolite profiling technique highlighting intermediary metabolites identified 2-AAA as a novel predictor of the development of diabetes. The relative risk associated with elevated 2-AAA concentrations was not attenuated by adjustment for standard biochemical measures of insulin resistance.

This investigation provides motivation to test whether plasma measurements of this molecule might help identify candidates for interventions to reduce diabetes risk and to elucidate the precise molecular pathways by which 2-AAA modulates insulin secretion, glucose homeostasis, and susceptibility to diabetes. The study was published on September 16, 2013, in the Journal of Clinical Investigation.

Related Links:

Massachusetts General Hospital
Waters
AB SCIEX


New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Coagulation Analyzer
CS-2400

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.