Novel Microscopy Technique Tracks Moving Microbes
By LabMedica International staff writers Posted on 11 Oct 2012 |
An innovative way to observe and track large numbers of rapidly moving objects under a microscope, capturing precise motion paths in three dimensions, has been developed.
The technique allows for the following of an unprecedented 24,000 rapidly moving cells over wide fields of view and through large sample volumes, recording each cell's path for as long as 20 seconds.
Scientists at the University of California (UCLA; Los Angeles, CA, USA) used offset beams of red and blue light to create holographic information that, when processed using sophisticated software, accurately reveal the paths of objects moving under a microscope. The y tracked several cohorts of more than 1,500 human male gamete cells over a relatively wide field of view of more than 17 square millimeters and large sample volume of up to 17 cubic millimeters over several seconds.
The technique, along with a novel software algorithm that the team developed to process observational data, revealed previously unknown statistical pathways for the cells. The scientists found that human male gamete cells travel in a series of twists and turns along a constantly changing path that occasionally follows a tight helix, a spiral that, 90% of the time, is in a clockwise or right-handed direction. Because only four to five percent of the cells in a given sample traveled in a helical path at any given time, microscopists would not have been able to observe the rare behavior without the new high-throughput microscopy technique.
The authors report reports observations of 24,000 cells over the duration of this study. Such a large number of observations provide a statistically significant dataset and a useful methodology for potentially studying a range of subjects, from the impact of pharmaceuticals and other substances on large numbers of cells, in real time, to fertility treatments and drug development. The same approach may also enable scientists to study quick-moving, single-celled microorganisms. The new lens-free holographic imaging technique could potentially reveal unknown elements of protozoan behavior and allow real-time testing of novel drug treatments to combat some of the most pathogenic forms of those organisms. The study was published on September 17, 2012, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
University of California, Los Angeles
The technique allows for the following of an unprecedented 24,000 rapidly moving cells over wide fields of view and through large sample volumes, recording each cell's path for as long as 20 seconds.
Scientists at the University of California (UCLA; Los Angeles, CA, USA) used offset beams of red and blue light to create holographic information that, when processed using sophisticated software, accurately reveal the paths of objects moving under a microscope. The y tracked several cohorts of more than 1,500 human male gamete cells over a relatively wide field of view of more than 17 square millimeters and large sample volume of up to 17 cubic millimeters over several seconds.
The technique, along with a novel software algorithm that the team developed to process observational data, revealed previously unknown statistical pathways for the cells. The scientists found that human male gamete cells travel in a series of twists and turns along a constantly changing path that occasionally follows a tight helix, a spiral that, 90% of the time, is in a clockwise or right-handed direction. Because only four to five percent of the cells in a given sample traveled in a helical path at any given time, microscopists would not have been able to observe the rare behavior without the new high-throughput microscopy technique.
The authors report reports observations of 24,000 cells over the duration of this study. Such a large number of observations provide a statistically significant dataset and a useful methodology for potentially studying a range of subjects, from the impact of pharmaceuticals and other substances on large numbers of cells, in real time, to fertility treatments and drug development. The same approach may also enable scientists to study quick-moving, single-celled microorganisms. The new lens-free holographic imaging technique could potentially reveal unknown elements of protozoan behavior and allow real-time testing of novel drug treatments to combat some of the most pathogenic forms of those organisms. The study was published on September 17, 2012, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).
Related Links:
University of California, Los Angeles
Latest Technology News
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
- Paper-Based Biosensor System to Detect Glucose Using Sweat Could Revolutionize Diabetes Management
- First AI-Powered Blood Test Identifies Patients in Earliest Stage of Breast Cancer
- Optical Biosensor Rapidly Detects Monkeypox Virus at Point of Care
- Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients
- New Noninvasive Methods Detect Lead Exposure Faster, Easier and More Accurately at POC
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more