We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Influenza Array to Study Genetic Drift of H1N1 Swine Flu

By LabMedica International staff writers
Posted on 12 Nov 2009
Print article
A U.S. Army medical center is using a new influenza detection system to analyze influenza cases, including those involving H1N1 swine flu.

CombiMatrix Corp. (Mukilteo, WA, USA) announced that Brooke Army Medical Center (BAMC; San Antonio, CA, USA) is using the CombiMatrix influenza detection array. Brooke Army Medical Center (BAMC; San Antonio, TX, USA) is a military hospital that is investigating the feasibility of screening all patients presenting in its emergency room with symptoms of respiratory distress and consenting to nasal swabs, by both electrochemical array-based diagnostics and bead-based multiplex fluorescent methods.

While there are other flu tests including the fluorescent test used at BAMC that can identify the presence or absence of H1N1 swine flu, they do not provide information on genetic drift of the virus. It is important to understand the genetic drift of rapidly mutating pathogens in general and of swine flu in particular because of the potential for increased pathogenicity of a mutated virus.

Worldwide, there are already several hundred thousand confirmed cases, and the World Health Organization (Geneva, Switzerland) has declared a pandemic. Although some of these estimates might be high, the numbers distinctly indicate that this viral disease is a major public health concern. Because swine flu can be a rapidly mutating virus, concerns exist about mutations that might make it more pathogenic while maintaining its highly infectious nature.

"We are pleased to be working with BAMC to evaluate the genetic drift of the swine flu virus,” stated Dr. Amit Kumar, president and CEO of CombiMatrix. "Our influenza array has demonstrated its ability to provide tremendous genetic information regarding numerous infectious agents including bird flu, swine flu, and other infectious agents. It is especially significant to note that our influenza detection system was developed with funding from the U.S. Department of Defense, and it is now being used to evaluate infections in military, former-military, and government personnel. Also, we encourage interested parties to review information on the website of the U.S. Centers for Disease
Control and Prevention [CDC; Atlanta, GA, USA] to get an understanding of the limitations of currently available flu tests, especially what we feel is poor performance of many rapid flu tests,” concluded Dr Kumar. The link for this information is as follows given below.

According to Dr. Gerald Merrill, laboratory director for the department of clinical investigation at BAMC, "We are already seeing a high percentage of novel H1N1 flu cases in the San Antonio military community this season. The CombiMatrix system allows us to screen for Swine flu versus seasonal influenza A and influenza B. Samples analyzed using the CombiMatrix system from last season allowed us to look at clustering of genotypes and to see patterns suggesting genetic drift in both the novel H1N1 swine flu virus and the seasonal influenza A virus in San Antonio. This can be useful in spotting divergence of strains and possibly, in identifying problems earlier than if we did not screen for such divergence,” concluded Dr. Merrill.

CombiMatrix is a biotechnology business that develops proprietary technologies, including products and services in the areas of drug development, genetic analysis, molecular diagnostics, nanotechnology, and defense and homeland security markets, as well as in other potential markets where our products and services could be utilized. The technologies the company has developed include a platform technology to rapidly produce user-defined, in situ synthesized, oligonucleotide arrays for use in identifying and determining the roles of genes, gene mutations, and proteins. This technology has a wide range of potential applications in the areas of genomics, proteomics, biosensors, drug discovery, drug development, diagnostics, combinatorial chemistry, material sciences, and nanotechnology. Other technologies include proprietary molecular synthesis and screening methods for the discovery of potential new drugs.

Related Links:

CombiMatrix
CDC Guidance for Diagnostic tests


New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
Hematology Analyzer
Swelab Lumi
New
hCG Urine Test
QuickVue hCG Urine Test
New
CMV QC
Inactivated Cytomegalovirus High Control

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more