We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Seasonal Temperature Impacts Patients’ Laboratory Results

By LabMedica International staff writers
Posted on 23 Dec 2021
Print article
Image: Schematic graphics showing how variation in common laboratory test results caused by ambient temperature (Photo courtesy of Cell Press)
Image: Schematic graphics showing how variation in common laboratory test results caused by ambient temperature (Photo courtesy of Cell Press)
Every year, 13 billion laboratory tests are performed in the USA, nearly 800 million in the UK, and many more worldwide. Test results provide critical data on clinically important changes in patient physiology.

These test including acute variations in plasma volume, body temperature, circadian rhythms, but can also vary for more idiosyncratic reasons from one phlebotomy to the next, like differences in technique or sample processing. The effect of ambient temperature on the day blood is drawn has been explored.

Health scientists at the University of California, Berkeley (Berkeley, CA, USA) and from the University of Chicago (Chicago, IL, USA) analyzed a large dataset of test results from 2009 to 2015, spanning several climate zones. In a sample of more than four million patients, they modeled more than two million test results as a function of temperature. They measured how day-to-day temperature fluctuations affected results, over and above the patients’ average values, and seasonal variation. In the dataset were 4,877,039 individuals who had laboratory result data. Daily temperature ranges from a low of −28 °C (Fairbanks, AK, USA; February 16, 2011) to 49 °C (Yuma, AZ, USA; July 23, 2014).

The investigators reported that the results showed that temperature affected more than 90% of individual tests and 51 of 75 assays, are significantly affected by temperature, including measures of kidney function (increased creatinine, urea nitrogen, and urine specific gravity), cellular blood components (decreased neutrophils, erythrocytes, and platelets), and lipids (increased high-density lipoprotein [HDL] and decreased total cholesterol, triglycerides, and low-density lipoprotein [LDL]). These small, day-to-day fluctuations did not likely reflect long-term physiological trends. For example, lipid panels checked on cooler days appeared to suggest a lower cardiovascular risk, leading to almost 10% fewer prescriptions for cholesterol-lowering drugs called statins to patients tested on the coolest days compared to the warmest days, even though these results probably did not reflect stable changes in cardiovascular risk.

One practical implication of the study is that laboratories could statistically adjust for ambient temperature on the test day when reporting laboratory results. Doing so could reduce weather-related variability at a lower cost than new laboratory assay technology or investments in temperature control in transport vans. In practice, decisions on adjustment would need to be at the discretion of the laboratory staff and the treating physician, potentially on a case-by-case basis.

Ziad Obermeyer, MD is the Distinguished Associate Professor of Health Policy and Management and first author of the study, said, “The textbook way of thinking about medical investigation is bench to bedside. First, we come up with a hypothesis, based on theory, then we test it with data. As more and more big data comes online, like the massive dataset of laboratory tests we used, we can flip that process on its head: discover fascinating new patterns and then use bench science to get to the bottom of it. I think this bedside-to-bench model is just as important as its better-known cousin because it can open up totally new questions in human physiology.”

The authors concluded that ambient temperature affects the results of many laboratory tests. These distortions, in turn, affect medical decision-making. Statistical adjustment in reporting is feasible and could limit undesired temperature-driven variability. The study was published on December 10, 2021 in the new journal MED.

Related Links:
University of California, Berkeley
University of Chicago


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more