We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Altered Perivascular Fibroblast Activity Precedes ALS Disease Onset

By LabMedica International staff writers
Posted on 28 Apr 2021
Print article
Image: Altered Perivascular Fibroblast Activity Precedes Amyotrophic Lateral Sclerosis Onset (Photo courtesy of Karolinska Institutet)
Image: Altered Perivascular Fibroblast Activity Precedes Amyotrophic Lateral Sclerosis Onset (Photo courtesy of Karolinska Institutet)
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor neurons that eventually causes muscular atrophy, paralysis and death. There is currently no cure. The cause of ALS is only understood in the 5% to 10% of patients who have an inherited form of the disease.

ALS patients demonstrate high variability of age at onset, non-motor symptoms and survival. In recent years, scientists have shifted focus from neurological explanations to these differences, and has taken an interest, for example, in the cerebral vascular system, which delivers oxygen and nutrients to brain tissue.

Scientists specializing in Affinity Proteomics at the Karolinska Institutet (Stockholm, Sweden) and their international colleagues used an expression-weighted cell-type enrichment method to infer cell activity in spinal cord samples from patients with sporadic ALS and mouse models of this disease. They examined the levels of a large number of potential marker proteins in the plasma of 574 patients with a recent ALS diagnosis and 504 healthy controls from four countries.

The team reported that patients with sporadic ALS present cell activity patterns consistent with two mouse models in which enrichments of vascular cell genes preceded microglial response. Notably, during the presymptomatic stage, perivascular fibroblast cells showed the strongest gene enrichments, and their marker proteins Secreted Phosphoprotein 1 (SPP1) and Collagen Type VI Alpha 1 Chain (COL6A1) accumulated in enlarged perivascular spaces in patients with sporadic ALS. Moreover, in plasma of 574 patients with ALS from four independent cohorts, increased levels of SPP1 at disease diagnosis repeatedly predicted shorter survival with stronger effect than the established risk factors of bulbar onset or neurofilament levels in cerebrospinal fluid.

Anna Månberg, PhD, the first author of the study, said, “It is exciting to see how the results from our protein profiling could be connected to the long range of cellular and molecular analysis that we have done and reveal the identified association to disease progression.”

The authors concluded that the activity of the recently discovered perivascular fibroblast can predict survival of patients with ALS and provide a new conceptual framework to re-evaluate definitions of ALS etiology. The study was published on April 15, 2021 in the journal Nature Medicine.

Related Links:
Karolinska Institutet

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more