We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Serum Free Thiols Predict Cardiovascular Events

By LabMedica International staff writers
Posted on 08 Jun 2020
Print article
Image: The Varioskan LUX multimode microplate reader (Photo courtesy of Thermo Fisher).
Image: The Varioskan LUX multimode microplate reader (Photo courtesy of Thermo Fisher).
Cardiovascular disease (CVD) is among the leading causes of morbidity and mortality globally, and during the past decade, the number of CVD-associated deaths has increased by 12.5%. Free thiols associate with favorable disease outcomes in many patient cohorts, and the current hypothesis is that oxidative stress might also play an important role in cardiovascular disease.

Oxidative stress is defined as the imbalance between the production of reactive oxygen species (ROS) and antioxidants. Serum free thiols (R-SH, sulfhydryl groups) reliably reflect systemic oxidative stress. Since serum free thiols are rapidly oxidized by reactive species, systemic oxidative stress is generally associated with reduced serum free thiol levels.

Scientists at the University Medical Center Groningen (Groningen, the Netherlands) included in a large, prospective population-based cohort study, a total of 5,955 participants. Study participants having urinary albumin concentrations ≥ 10 mg/L were invited to visit the outpatient clinic, as well as a random selection of participants with urinary albumin concentrations < 10 mg/L.

The team measured a variety of biochemical parameters including high-sensitive C-reactive protein (hsCRP) and urinary albumin excretion (UAE) were measured by nephelometry (Dade Behring Diagnostics, Marburg, Germany); serum total cholesterol and fasting glucose were measured by dry chemistry (Eastman Kodak, Rochester, NY, USA). Serum total protein was measured using spectrophotometry (Roche Modular, Roche, Mannheim, Germany). High-density lipoprotein (HDL) cholesterol was measured using a homogeneous method (direct HDL, Aeroset System, Abbott Laboratories, Abbott Park, IL, USA). Measurement of serum free thiols (R-SH, sulfhydryl groups) was performed and background absorption was measured at 412 nm using the Varioskan microplate reader (Thermo Scientific, Breda, the Netherlands).

The team reported that the mean protein-adjusted serum free thiol level was 5.05 ± 1.02 μmol/g of protein. Protein-adjusted serum free thiols significantly predicted the risk of CV events, even after adjustment for potential confounding factors (hazard ratio [HR] per doubling 0.68). Similarly, protein-adjusted serum free thiols were significantly predictive of the risk of all-cause mortality (HR per doubling 0.66). Stratified analyses revealed lower HRs for subjects with a lower body mass index (BMI), without hypertension, and without diabetes. Conversely, HRs were lower in subjects with albuminuria.

The authors concluded that that protein-adjusted serum free thiol levels are significantly predictive of the risk of CV events and all-cause mortality in the general population. Free thiols might harbor great potential as an easily measurable biomarker in the current primary and secondary CVD prevention strategies, and the results highlight the potential significance and clinical applicability of serum free thiols since they are amendable to therapeutic intervention. The study was published on May 27, 2020 in the journal BMC Medicine.




Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more