LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Smartphone-Based Analyzer Designed for Sample Testing

By LabMedica International staff writers
Posted on 21 Aug 2017
Print article
Image: The spectral transmission-reflectance-intensity (TRI)-Analyzer attaches to a smartphone and analyzes patient blood, urine, or saliva samples as reliably as clinic-based instruments that cost thousands of dollars (Photo courtesy of the Department of Bioengineering, University of Illinois at Urbana-Champaign).
Image: The spectral transmission-reflectance-intensity (TRI)-Analyzer attaches to a smartphone and analyzes patient blood, urine, or saliva samples as reliably as clinic-based instruments that cost thousands of dollars (Photo courtesy of the Department of Bioengineering, University of Illinois at Urbana-Champaign).
A handheld spectrophotometer that uses a smartphone camera to measure changes in absorption of natural light or emission of fluorescent light is the key to a mobile instrument that can evaluate biological samples with the accuracy of clinical laboratory analyzers but at a fraction of the cost.

Investigators at the University of Illinois College of Engineering (Urbana-Champaign, USA) utilized the smartphone's internal rear-facing camera as a high-resolution spectrometer for measuring the colorimetric absorption spectrum, fluorescence emission spectrum, and resonant reflection spectrum from a microfluidic cartridge inserted into the measurement light path. Under user selection, the instrument gathered light from either the white “flash” LED of the smartphone or an integrated green laser diode to direct illumination into a liquid test sample or onto a photonic crystal biosensor.

Light emerging from each type of assay was gathered via optical fiber and passed through a diffraction grating placed directly over the smartphone camera to generate spectra from the assay when an image was collected. Each sensing modality was associated with a unique configuration of a microfluidic “stick” containing a linear array of liquid chambers that were swiped through the instrument while the smartphone captured video, and the software automatically selected spectra representative of each compartment.

The capabilities of the spectral transmission-reflectance-intensity (TRI)-analyzer were demonstrated by using it to perform representative assays in the field of point-of-care (POC) maternal and infant health: an ELISA assay for the fetal fibronectin protein used as an indicator for pre-term birth and a fluorescent assay for phenylalanine as an indicator for phenylketonuria. In each case, the TRI-analyzer was capable of achieving limits of detection that were comparable to those obtained for the same assay measured with a conventional laboratory microplate reader.

The investigators estimated that an instrument built to the patented TRI Analyzer specifications would cost only about 550 USD as compared to several thousand dollars for a clinical laboratory analyzer.

"Our TRI Analyzer is like the Swiss Army knife of biosensing," said senior author Dr. Brian T. Cunningham, professor of engineering at the University of Illinois College of Engineering. "It is capable of performing the three most common types of tests in medical diagnostics, so in practice, thousands of already-developed tests could be adapted to it."

Details of the TRI Analyzer were published in the July 24, 2017, online edition of the journal Lab on a Chip.

Related Links:
University of Illinois College of Engineering

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more