We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Wearable Tool Created for Monitoring Diabetes

By LabMedica International staff writers
Posted on 05 Jul 2017
Print article
Image: The wearable diagnostic biosensor that can detect three interconnected, diabetes-related compounds, cortisol, glucose and interleukin-6, in perspired sweat for up to a week without loss of signal integrity (Photo courtesy of the University of Texas at Dallas).
Image: The wearable diagnostic biosensor that can detect three interconnected, diabetes-related compounds, cortisol, glucose and interleukin-6, in perspired sweat for up to a week without loss of signal integrity (Photo courtesy of the University of Texas at Dallas).
A wearable diagnostic biosensor has been developed that can detect three interconnected compounds, cortisol, glucose and interleukin-6, in perspired sweat for up to a week without loss of signal integrity.

One factor that facilitated their device's progress was the use of room temperature ionic liquid (RTIL), a gel that serves to stabilize the microenvironment at the skin-cell surface so that a week's worth of hourly readings can be taken without the performance degrading over time.

Scientists at the University of Texas at Dallas (Richardson, TX, USA) fabricated a sensor on a flexible nanoporous polyamide substrate with the electrodes and active region with the fluids wicked onto the immunoassay functionalized zinc oxide (ZnO). Infra–Red (IR) spectra were obtained using a Nicolet iS-50 Fourier transform infrared spectrometer Thermo Fisher Scientific equipped with deuterated triglycine sulfate (DTGS) detector and KBr beam splitter.

Temporal studies were performed using both infrared spectroscopic, dynamic light scattering, and impedimetric spectroscopy to demonstrate stability in detection of analytes, interleukin-6 (IL-6) and cortisol, from human sweat in RTILs. The team also determined that their biomarker measurements are reliable with a tiny amount of sweat, just 1 to 3 microliters, much less than the 25 to 50 previously believed necessary. The initial concept for a system level integration of these sensors was done in collaboration with EnLiSense LLC, a startup focused on enabling lifestyle based sensors and devices.

Shalini Prasad, PhD, a professor of Systems Biology Science and senior author of the study, said, “If a person has chronic stress, their cortisol levels increase, and their resulting insulin resistance will gradually drive their glucose levels out of the normal range. At that point, one could become pre-diabetic, which can progress to type 2 diabetes, and so on. If that happens, your body is under a state of inflammation, and this inflammatory marker, interleukin-6, will indicate that your organs are starting to be affected.” The study was published online on May 16, 2017, in the journal Scientific Reports.

Related Links:
University of Texas at Dallas

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more