We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Amine Biomarkers Identify Risk of Alzheimer's Disease

By LabMedica International staff writers
Posted on 30 Jun 2017
Print article
The identification of novel biomarkers associated with Alzheimer's disease (AD) could provide key biological insights and permit targeted preclinical prevention. Circulating metabolites associated with incident dementia and AD has been investigated using metabolomics.

Alzheimer's disease is the most common form of dementia responsible for a slow and progressive deterioration of memory and leads to frailty and dependence in elderly people. There is currently no effective preventive or curative treatment for AD, which could result in a public health crisis given the continuous aging of populations worldwide.

Scientists at the Boston University School of Medicine (Boston, MA, USA) and their colleagues measured plasma levels of 217 metabolites and were assessed in 2,067 dementia-free Framingham Offspring Cohort participants whose mean age was 55.9 ± 9.7 years; and 52.4% were women. They studied their associations with future dementia and AD risk in multivariate Cox models.

The team found 93 participants who developed incident dementia with a mean follow-up of 15.6 ± 5.2 years. Higher plasma anthranilic acid levels were associated with greater risk of dementia (hazard ratio [HR] = 1.40). Higher glutamic acid and lower taurine and hypoxanthine, a precursor of uric acid, levels were also associated with increased risk of subsequent dementia. The authors concluded that they had identified four biologically plausible, candidate plasma biomarkers for dementia. Association of anthranilic acid implicates the kynurenine pathway, which modulates glutamate excitotoxicity. The associations with hypoxanthine and taurine strengthen evidence that uric acid and taurine may be neuroprotective.

Sudha Seshadri, MD, a professor of neurology and senior investigator, sad, “First anthranilic acid is produced during the degradation of tryptophan, an essential amino acid. Interestingly, other compounds produced through the same reactions have been reported as protective or deleterious for neurons and could constitute valuable drug targets. Second, this potential marker could also be used to identify groups of persons at higher risk of developing dementia, which could improve the efficiency of clinical trials and in the future, detect persons that would benefit the most from a preventive treatment.” The study was published on June 8, 2017, in the journal Alzheimer and Dementia.

Related Links:
Boston University School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more