LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Electronics-Enhanced Microfluidic Chip Counts and Characterizes Cells or Particles

By LabMedica International staff writers
Posted on 02 May 2016
Print article
Image: A hybrid microfluidic chip (held by Dr. Fatih Sarioglu) uses a simple circuit pattern to assign a unique seven-bit digital identification number to each cell passing through the channels (Photo courtesy of the Georgia Institute of Technology).
Image: A hybrid microfluidic chip (held by Dr. Fatih Sarioglu) uses a simple circuit pattern to assign a unique seven-bit digital identification number to each cell passing through the channels (Photo courtesy of the Georgia Institute of Technology).
In a proof-of-concept study, a team of electrical and computer engineers demonstrated the ability of an electronics-enhanced microfluidic chip to characterize and count ovarian cancer cells.

While numerous biophysical and biochemical assays have been developed that rely on spatial manipulation of particles or cells as they are processed on lab-on-a-chip devices, analysis of spatially distributed particles on these devices typically requires microscopy, which negates the cost and size advantages of microfluidic assays.

Investigators at the Georgia Institute of Technology (Atlanta, USA) have combined microfluidics with electronic sensor technology to produce a lab-on-a-chip device that can determine the location, size, and speed of cells moving through the microfluidic channels. The information for each individual cell is stored and then used as the basis for automated cell counting and analysis.

The underlying principle enabling cell identification is code division multiple access (CDMA), which is used by cellular telephone networks to separate the signals from each user. The innovative on-chip version is called microfluidic CODES. The CODES method relies on a grid of micron-scale electrical circuitry located in a layer beneath the four-channel microfluidic chip. Current flowing through the circuitry creates an electrical field in the microfluidic channels above the grid. When a cell passes through one of the microfluidic channels, it creates an impedance change in the circuitry that signals the cell’s passage and provides information about the cell’s location, size, and the speed at which it is moving through the channel. The packet of information generated for each cell is assigned a unique seven-bit identifier number that is stored for analysis.

As a proof of principle, the investigators use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. In this exercise more than a thousand ovarian cancer cells were tracked with an accuracy rate of better than 90%.

“We are digitizing information about the sorting done on a microfluidic chip,” said senior author Dr. Fatih Sarioglu, assistant professor of electrical and computer engineering at the Georgia Institute of Technology. “By combining microfluidics, electronics, and telecommunications principles, we believe this will help address a significant challenge on the output side of lab-on-a-chip technology.”

“We have created an electronic sensor without any active components,” said Dr. Sarioglu. “It is just a layer of metal, cleverly patterned. The cells and the metallic layer work together to generate digital signals in the same way that cellular telephone networks keep track of each caller’s identity. We are creating the equivalent of a cell phone network on a microfluidic chip. Our technique could turn all of the microfluidic manipulations that are happening on the chip into quantitative data related to diagnostic measurements.”

The CODES-based lab-on-a-chip was described in the March 29, 2016, online edition of the journal Lab on a Chip.

Related Links:
Georgia Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more