LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Technology Standardizes Screening for Sickle Cell Disease

By LabMedica International staff writers
Posted on 23 Dec 2015
Print article
Image: The HemeChip micro-electrophoretic device that examines and identifies hemoglobins including hemoglobinopathies (Photo courtesy of Case Western Reserve University).
Image: The HemeChip micro-electrophoretic device that examines and identifies hemoglobins including hemoglobinopathies (Photo courtesy of Case Western Reserve University).
Over half of babies born with sickle cell disease (SCD) in countries with limited resources die before age five and over six million people in West and Central Africa suffer from the disease, which causes pain crises, widespread organ damage and early mortality.

Newborn screening tests can only be performed in central laboratories in developing countries and the results can take several weeks and it may be impossible to reach the parents after they have left the health center. This may delay the onset of important interventions, including immunizations, antibiotics and vitamins and therefore, there is a need for simple, rapid and mobile analyses of hemoglobin types in newborn blood.

Scientists at Case Western Reserve University School of Medicine (Cleveland, OH, USA) have developed an innovative mobile device, the Hemoglobin-Electrophoresis Biochip or HemeChip, which has the unique ability to rapidly screen for sickle cell disease with just a few drops of blood. They utilized a micro-engineered design and microfluidic approach in HemeChip development. Microfluidic technology is a novel tool which allows small sample volume of less than 20 µL of blood, from a finger or heel prick. Other attributes of the HemeChip are portability, ease of use, and low power consumption.

The HemeChip, a micro-electrophoretic device, examines and identifies hemoglobins, including hemoglobinopathies sickle cell anemia (HbSS), sickle trait (HbAS) and SC disease (HbSC). The microchip system allows rapid manual assembly and is single use, to prevent potential cross-contamination between patients. HemeChip fabrication is suitable for mass-production, which is critical for translation of point-of-care technologies. At present, the HemeChip material cost is less than USD 5.00, and this cost is likely to decrease if mass-produced.

Jane Little, MD, an associate professor and lead author of the study, said, “While sickle cell newborn screening is standard in the USA, very few infants are screened in Africa because of the high cost and level of skill needed to run traditional tests. This new mobile technology provides an easy to use, cost-effective tool that takes us closer to standardizing newborn screenings on mobile devices, thus simplifying diagnosis. It could make a huge difference in developing nations worldwide, enabling early treatment for this disease.” The study was presented at the 57th Annual Meeting of the American Society of Hematology (ASH) held December 5–8, 2015, in Orlando (FL, USA).

Related Links:

Case Western Reserve University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more