LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification

By LabMedica International staff writers
Posted on 17 Mar 2025
Print article
Image: The new technology offers rapid, highly sensitive detection of multi-drug-resistant bacteria (Photo courtesy of Adobe Stock)
Image: The new technology offers rapid, highly sensitive detection of multi-drug-resistant bacteria (Photo courtesy of Adobe Stock)

Rapid detection of pathogens is essential for effective disease management, especially in cases of bloodstream infections. Traditional molecular diagnostics often require nucleic acid preamplification, which increases both time and cost. Now, a new technology enables rapid and highly sensitive detection of multi-drug-resistant bacteria and other pathogens, even at low concentrations.

Researchers from the University of Illinois Grainger College of Engineering (Urbana, IL, USA) have developed a CRISPR-based diagnostic test capable of rapidly detecting low levels of pathogen genetic material in blood samples, without the need for nucleic acid amplification. In CRISPR/Cas diagnostic tests, guide RNAs bind to pathogen DNA or RNA, triggering the activation of Cas enzymes that cleave reporter nucleic acids, which fluoresce when cleaved. However, traditional CRISPR-based techniques struggle to detect pathogens at low concentrations without a preamplification step. To address this, the team developed a CRISPR-based test that eliminates the need for amplification by combining two CRISPR/Cas systems into a complex known as CRISPR-Cascade. One part of the system contains a guide RNA specific to the pathogen's nucleic acid, along with a Cas protein. When the Cas protein cleaves specially engineered nucleic acids added to the system, portions of these nucleic acids can bind to and activate a second CRISPR/Cas unit, triggering a positive feedback loop that amplifies the signal, resulting in a high signal-to-noise ratio.

The research, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), demonstrated unprecedented sensitivity for pathogen detection. It successfully detected multi-drug-resistant Staphylococcus aureus DNA without prior amplification at concentrations significantly lower than the detection limits of tests using a single Cas enzyme. The test provided a straightforward "yes/no" result for the presence of any one of four common bloodstream pathogens in spiked samples. The findings suggest that this approach could lead to the development of highly sensitive, rapid CRISPR-based diagnostic tests capable of detecting pathogens in minutes, without the need for nucleic acid amplification.

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultra-Low Temperature Freezer
iUF118-GX
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.