Blood Test Could Help More Women Survive Aggressive Triple Negative Breast Cancer
By LabMedica International staff writers Posted on 12 Mar 2025 |

Cancer research shows that over 90% of women diagnosed with breast cancer at its earliest stage survive for five years or more. However, this survival rate dramatically decreases to just 30% when the cancer is discovered at more advanced stages. One of the challenges in treating breast cancer, particularly aggressive forms such as triple-negative breast cancer, is the difficulty in quickly assessing treatment effectiveness. Often, doctors rely on chemotherapy regimens, which are expensive and toxic, continuing with treatment even when it proves ineffective. Typically, doctors cannot determine if a chemotherapy regimen is working until the patient has completed all the prescribed cycles, which can take up to six months. If the treatment is unsuccessful, the patient may need to begin a new regimen, starting the process over. Now, a simple blood test that searches for a biomarker in plasma will allow doctors to assess quickly whether cancer treatments, like chemotherapy, are working. This allows for faster adjustments to the treatment plan, switching to more effective therapies if necessary.
Previously, researchers have focused on nitric oxide production, a molecule that regulates cancer cell growth. Researchers at the University of New England (UNE, Portland, ME, USA) discovered a biomarker called Nw-hydroxy-L-Arginine (NOHA) that is a sensitive and reliable indicator for estrogen receptor-negative tumors, which are more aggressive types of breast cancer. Prior research had already linked nitric oxide, inflammatory biology, and breast cancer. The researchers realized that NOHA, being upstream of the nitric oxide process, could be measured through a blood test rather than a tissue sample. NOHA directly correlates with nitric oxide levels, without interference from other biological pathways. With this discovery, they began exploring NOHA as a biomarker for both detecting and monitoring breast cancer and even applied for a patent for a diagnostic tool that uses this blood marker to track aggressive, estrogen-negative tumors.
The researchers conducted a study in Tanzania to test whether NOHA could determine the estrogen receptor status in breast cancer patients. The results from this study were promising, suggesting that NOHA has the potential for improving cancer care. With the NOHA blood test, doctors could monitor NOHA levels after each treatment cycle. If the levels show an unfavorable change, the physician could pause the current drug combination and try another. Building on these findings, the team is now researching NOHA's role in managing triple-negative breast cancer in the U.S. through clinical trials, which are essential in translating laboratory results into real-world applications.
In addition, the team is exploring NOHA’s potential for early detection of breast cancer, particularly for individuals with genetic predispositions, and its role in drug development. Their work is setting the stage for more dynamic monitoring of treatment effectiveness. Following their success with breast cancer, the researchers have expanded their work to ovarian cancer. The American Cancer Society estimates that nearly 20,000 new cases of ovarian cancer will be diagnosed in the U.S. this year, with almost 13,000 women dying from the disease. Because the symptoms of ovarian cancer are often subtle or absent in its early stages, the disease is frequently diagnosed at a later, more advanced stage. The researchers' findings indicate that NOHA could also be used to detect and monitor ovarian cancer. This led them to secure a second patent for a blood diagnostic tool to identify ovarian cancer, broadening the impact of their groundbreaking research.
“It validates to us that (NOHA) is not only going to be centric to breast cancer, but it can also expand to other tumors like ovarian cancer,” said Srinidi (Sri) Mohan, Ph.D., professor at the University of New England School of Pharmacy, who identified NOHA as a potential biomarker for breast cancer detection and monitoring.
Related Links:
University of New England
Latest Molecular Diagnostics News
- New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
- Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
- Revolutionary Blood Test Detects 30 Different Types of Cancers with 98% Accuracy
- Simple Blood Test Better Predicts Heart Disease Risk
- New Blood Test Detects 12 Common Cancers Before Symptoms Appear
- Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
- First-of-its-Kind Blood Test Detects Trauma-Related Diseases
- Key Gene Identified in Common Heart Disease Unlocks Life-Saving Diagnostic Potential
- Cheap Cell-Free DNA Based Test Accurately Predicts Preterm Birth
- RNA Blood Test Detects Cancers and Resistance to Treatment
- IL-6 Outperforms Traditional Tests for Early Sepsis Detection
- Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
- Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
- Novel Autoantibody Against DAGLA Discovered in Cerebellitis
- Blood Test Could Identify Patients at Risk for Severe Scleroderma
- Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more