Long-Read Sequencing to Improve Diagnosis Rate of Rare Diseases
By LabMedica International staff writers Posted on 28 Jan 2025 |

Rare genetic diseases affect one in every 10 people globally, yet around 50% of cases remain undiagnosed despite advances in genetic technology and testing. The diagnosis process can take several years, especially for children, due to the limitations of current clinical testing methods, such as short-read sequencing, which often misses crucial genomic information. Researchers are now focusing on long-read sequencing as a promising alternative to speed up diagnoses and provide a more comprehensive dataset, potentially eliminating the need for multiple specialized tests.
A study led by researchers at the University of California - Santa Cruz (Santa Cruz, CA, USA) explored the potential of long-read sequencing for diagnosing rare monogenic diseases, which are caused by disruptions in a single gene. The study, published in The American Journal of Human Genetics, found that long-read sequencing could drastically reduce the time for diagnosis from years to days and at a significantly lower cost. The study utilized nanopore sequencing, a technique developed at UCSC, which provided end-to-end reads of the patients’ genomes at approximately USD 1,000 per sample, with data analysis costing around USD 100.
The research involved analyzing 42 patients with rare diseases, some of whom had been diagnosed through traditional short-read methods, while others remained undiagnosed. The long-read sequencing approach provided a more exhaustive dataset, identifying additional rare candidate variants, long-range phasing, and methylation information that short-read sequencing could not capture. This method enabled the researchers to provide conclusive diagnoses for 11 of the 42 patients, including cases of congenital adrenal hypoplasia, disorders of sex development, and neurodevelopmental disorders. On average, long-read sequencing covered 280 genes with significant protein-coding regions that had been missed by short reads, making the diagnosis process faster, more comprehensive, and more cost-effective.
One of the primary advantages of long-read sequencing is its ability to read long stretches of DNA at once, which helps overcome the limitations of short-read sequencing, particularly in complex genomic regions. Furthermore, it provides phasing data, which helps clinicians understand which variants were inherited from each parent, offering valuable insights for genetic diagnoses. The study suggests that long-read sequencing has the potential to transform the diagnosis of rare genetic diseases, offering a more efficient and effective approach to patient care and treatment.
“Long read sequencing is likely the next best test for unsolved cases with either compelling variants in a single gene or a clear phenotype,” said Shloka Negi, a UC Santa Cruz BME Ph.D. student who is the paper’s first author. “It can serve as a single diagnostic test, reducing the need for multiple clinical visits and transforming a years-long diagnostic journey into a matter of hours.”
Latest Pathology News
- AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
- AI Tool Enhances Interpretation of Tissue Samples by Pathologists
- AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
- Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
- New Lab Model to Help Find Treatments for Aggressive Blood Cancer
- AI-Supported Microscopy Improves Detection of Intestinal Parasite Infections
- AI Performs Virtual Tissue Staining at Super-Resolution
- AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
- Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
- Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
- Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
- Advances in Monkeypox Virus Diagnostics to Improve Management of Future Outbreaks
- Nanoneedle-Studded Patch Could Eliminate Painful and Invasive Biopsies
- AI Cancer Classification Tool to Drive Targeted Treatments
- AI-Powered Imaging Enables Faster Lung Disease Treatment
- New Laboratory Method Speeds Diagnosis of Rare Genetic Disease
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
DNA Methylation Signatures of Aging Could Help Assess Mortality Risk
Aging is associated with the progressive degeneration and loss of function across multiple physiological systems. Chronological age is the most common indicator of aging; however, there is significant... Read more
Molecular Diagnostics System Provides Lab-Quality Results at POC
Currently, there is a need for a comprehensive molecular diagnostics ecosystem that enables effective diagnostic stewardship, providing the diagnostic tools to offer the right tests, for the right patient,... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more