Long-Read Sequencing to Improve Diagnosis Rate of Rare Diseases
|
By LabMedica International staff writers Posted on 28 Jan 2025 |

Rare genetic diseases affect one in every 10 people globally, yet around 50% of cases remain undiagnosed despite advances in genetic technology and testing. The diagnosis process can take several years, especially for children, due to the limitations of current clinical testing methods, such as short-read sequencing, which often misses crucial genomic information. Researchers are now focusing on long-read sequencing as a promising alternative to speed up diagnoses and provide a more comprehensive dataset, potentially eliminating the need for multiple specialized tests.
A study led by researchers at the University of California - Santa Cruz (Santa Cruz, CA, USA) explored the potential of long-read sequencing for diagnosing rare monogenic diseases, which are caused by disruptions in a single gene. The study, published in The American Journal of Human Genetics, found that long-read sequencing could drastically reduce the time for diagnosis from years to days and at a significantly lower cost. The study utilized nanopore sequencing, a technique developed at UCSC, which provided end-to-end reads of the patients’ genomes at approximately USD 1,000 per sample, with data analysis costing around USD 100.
The research involved analyzing 42 patients with rare diseases, some of whom had been diagnosed through traditional short-read methods, while others remained undiagnosed. The long-read sequencing approach provided a more exhaustive dataset, identifying additional rare candidate variants, long-range phasing, and methylation information that short-read sequencing could not capture. This method enabled the researchers to provide conclusive diagnoses for 11 of the 42 patients, including cases of congenital adrenal hypoplasia, disorders of sex development, and neurodevelopmental disorders. On average, long-read sequencing covered 280 genes with significant protein-coding regions that had been missed by short reads, making the diagnosis process faster, more comprehensive, and more cost-effective.
One of the primary advantages of long-read sequencing is its ability to read long stretches of DNA at once, which helps overcome the limitations of short-read sequencing, particularly in complex genomic regions. Furthermore, it provides phasing data, which helps clinicians understand which variants were inherited from each parent, offering valuable insights for genetic diagnoses. The study suggests that long-read sequencing has the potential to transform the diagnosis of rare genetic diseases, offering a more efficient and effective approach to patient care and treatment.
“Long read sequencing is likely the next best test for unsolved cases with either compelling variants in a single gene or a clear phenotype,” said Shloka Negi, a UC Santa Cruz BME Ph.D. student who is the paper’s first author. “It can serve as a single diagnostic test, reducing the need for multiple clinical visits and transforming a years-long diagnostic journey into a matter of hours.”
Latest Pathology News
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
New Molecular Test Simultaneously Detects Three Major Fungal Infections
Serious fungal infections associated with soil exposure remain difficult to diagnose promptly, especially in regions where Histoplasma, Blastomyces, and Coccidioides are endemic. Many patients present... Read more
Blood Test Guides More Effective Ovarian Cancer Treatment
Ovarian cancer affects hundreds of thousands of women worldwide each year, yet only some respond to PARP inhibitor therapy, which targets tumors with defective DNA repair. Clinicians have long observed... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








