Long-Read Sequencing to Improve Diagnosis Rate of Rare Diseases
|
By LabMedica International staff writers Posted on 28 Jan 2025 |

Rare genetic diseases affect one in every 10 people globally, yet around 50% of cases remain undiagnosed despite advances in genetic technology and testing. The diagnosis process can take several years, especially for children, due to the limitations of current clinical testing methods, such as short-read sequencing, which often misses crucial genomic information. Researchers are now focusing on long-read sequencing as a promising alternative to speed up diagnoses and provide a more comprehensive dataset, potentially eliminating the need for multiple specialized tests.
A study led by researchers at the University of California - Santa Cruz (Santa Cruz, CA, USA) explored the potential of long-read sequencing for diagnosing rare monogenic diseases, which are caused by disruptions in a single gene. The study, published in The American Journal of Human Genetics, found that long-read sequencing could drastically reduce the time for diagnosis from years to days and at a significantly lower cost. The study utilized nanopore sequencing, a technique developed at UCSC, which provided end-to-end reads of the patients’ genomes at approximately USD 1,000 per sample, with data analysis costing around USD 100.
The research involved analyzing 42 patients with rare diseases, some of whom had been diagnosed through traditional short-read methods, while others remained undiagnosed. The long-read sequencing approach provided a more exhaustive dataset, identifying additional rare candidate variants, long-range phasing, and methylation information that short-read sequencing could not capture. This method enabled the researchers to provide conclusive diagnoses for 11 of the 42 patients, including cases of congenital adrenal hypoplasia, disorders of sex development, and neurodevelopmental disorders. On average, long-read sequencing covered 280 genes with significant protein-coding regions that had been missed by short reads, making the diagnosis process faster, more comprehensive, and more cost-effective.
One of the primary advantages of long-read sequencing is its ability to read long stretches of DNA at once, which helps overcome the limitations of short-read sequencing, particularly in complex genomic regions. Furthermore, it provides phasing data, which helps clinicians understand which variants were inherited from each parent, offering valuable insights for genetic diagnoses. The study suggests that long-read sequencing has the potential to transform the diagnosis of rare genetic diseases, offering a more efficient and effective approach to patient care and treatment.
“Long read sequencing is likely the next best test for unsolved cases with either compelling variants in a single gene or a clear phenotype,” said Shloka Negi, a UC Santa Cruz BME Ph.D. student who is the paper’s first author. “It can serve as a single diagnostic test, reducing the need for multiple clinical visits and transforming a years-long diagnostic journey into a matter of hours.”
Latest Pathology News
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
- New Software Tool Improves Analysis of Complex Spatial Data from Tissues
- AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
- New Tool Could Revolutionize Acute Leukemia Diagnosis
- New Microscope Promises to Speed Up Medical Diagnostics
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Urine Test Detects Early Stage Pancreatic Cancer
Pancreatic cancer remains among the hardest cancers to detect early. In the UK, around 10,000 people are diagnosed each year, but only 5% survive beyond five years. Late diagnosis is a major factor—more... Read more
Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read moreTechnology
view channel
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read more
Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
Globally, over 300 million people live with Hepatitis B and C, and 40 million with HIV, according to WHO estimates. Diagnosing bloodborne viruses such as HIV and Hepatitis B and C remains challenging in... Read moreIndustry
view channel
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








