We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo
Medica 2025
Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Laser-Based Imaging Technique Enables Much Faster Tissue Diagnosis during Tumor Surgery

By LabMedica International staff writers
Posted on 26 Oct 2023
Image: A new AI technique enables rapid digital tissue analysis for brain tumor surgery (Photo courtesy of Medical University Vienna)
Image: A new AI technique enables rapid digital tissue analysis for brain tumor surgery (Photo courtesy of Medical University Vienna)

The central nervous system can have around 120 different kinds of tumors, and the first step in treating them generally involves surgery along with acquiring histological samples. During this procedure, a small part of the tumor is excised and a histological frozen section is readied in the neuropathology department to better understand the tumor's features. Now, a newly developed laser-based imaging method allows neuropathologists to generate a report in just a matter of minutes.

Surgeons at Medical University Vienna (Vienna, Austria) have started employing this novel laser-based imaging method that considerably speeds up tissue diagnosis during tumor surgeries. Using Stimulated Raman Histology (SRH), a digital cross-section of the tissue can be instantly created right in the surgical suite, enabling a diagnosis within just a few minutes. In comparison, the standard method involving tissue transportation, manual preparation, and analysis usually takes around 30 minutes on an international average.

One of the advantages of this technique is that since the tissue is examined in its natural, untreated form, it remains fully available for any subsequent, more in-depth diagnostic tests. If SRH detects diagnostic tumor tissue, needle biopsies can also be concluded much more quickly. These procedures are not applicable just to brain tumors but can also be utilized for confirming diagnoses of other neurological conditions like blood vessel inflammatory diseases and demyelinating lesions. Initially developed in the United States, the SRH method was first adopted in Europe at the Department of Neurosurgery of MedUni Vienna and University Hospital Vienna, led by Georg Widhalm. A research study at MedUni Vienna showed a 99% correlation between digital histology and conventional frozen section.

"The new technology enables surgeons to make faster decisions regarding the optimal surgical strategy in the operating room, which significantly reduces the time in the operating room for patients. In addition, the safety of the procedure is also increased," said Georg Widhalm.

Related Links:
Medical University Vienna 

New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Silver Member
PCR Plates
Diamond Shell PCR Plates
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
GLOBE SCIENTIFIC, LLC