Bioelectronic Devices Capture and Release Tumor Cells for Early Cancer Diagnosis
|
By LabMedica International staff writers Posted on 11 Sep 2023 |

Metastasis, the spread of cancer cells from the primary tumor to distant organs, is the main cause of cancer-related deaths. Metastasis occurs when a cancer cell detaches from the initial tumor, travels through the bloodstream and lymphatic system, and invades other parts of the body. Collecting these circulating tumor cells non-invasively is crucial for understanding cell biology, as well as for cancer diagnosis, prognosis, and drug development. Traditional methods for gathering these cells in a usable form are time-consuming, given that the concentration of these cells in the bloodstream is incredibly low compared to other cell types.
Now, a group of researchers at the University of the Basque Country (UPV/EHU, Leioa, Spain) has designed a bioelectronic device that could revolutionize this process. The device featuring gold electrodes coated with a smart polymer not only captures but also releases cells in a controllable, non-destructive manner, while simultaneously tracking these activities through standard electrical readings. This is seen as a foundational step toward creating universal systems for early cancer detection. Previous biosensors designed for this purpose were less than ideal because they damaged cells during the capture and release process. To address this, the team integrated smart materials with bioelectronics, which involves the use of carbon-based semiconductors, for more accurate and less harmful cell capture and release mechanisms.
In their preliminary tests, the researchers did not use real patient samples but instead relied on commercial cells sustained in culture media. The results demonstrated that the device successfully captured and released these cells. The team is now in the process of customizing the polymer to interact specifically with different types of cells. Currently, the device is being used on esophageal cancer patient samples. Its role is to selectively accumulate cancer cells, making it easier to determine their concentration in the sample.
“We wanted to come up with a device capable of concentrating cancer cells in order to detect their concentration,” said Janire Sáez, Ikerbasque research professor in the UPV/EHU’s Microfluidics Cluster Group. These are the first steps towards developing platforms for cancer screening. This could be a good step forward because they generally involve low-cost technologies and can be mass-produced. The idea is to use this type of technology for early cancer diagnosis.”
Related Links:
UPV/EHU
Latest Technology News
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Channels
Clinical Chemistry
view channel
Study Compares Analytical Performance of Quantitative Hepatitis B Surface Antigen Assays
Hepatitis B virus (HBV) continues to pose a significant global health challenge, with chronic infection affecting hundreds of millions of people despite effective vaccines and antiviral therapies.... Read more
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
Single-Cell Profiling Technique Could Guide Early Cancer Detection
Cancer often develops silently over many years, as individual cells acquire mutations that give them a growth advantage long before a tumor forms. These pre-malignant cells can exist alongside normal cells... Read more
Intraoperative Tumor Histology to Improve Cancer Surgeries
Surgical removal of cancer remains the first-line treatment for many tumors, but ensuring that all cancerous tissue is removed while preserving healthy tissue is a major challenge. Surgeons currently rely... Read more
Rapid Stool Test Could Help Pinpoint IBD Diagnosis
Inflammatory bowel disease (IBD) is a chronic condition in which the immune system mistakenly attacks the digestive tract, causing persistent gut inflammation. Diagnosis and disease monitoring often depend... Read more
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more






 Analyzer.jpg)
