Finding Needles in a Haystack: How One Lab Identified Random Errors in a Large Dataset
By Jen A. Miller (AACC) Posted on 07 Jul 2023 |

Illustration
Lab errors are bound to happen. A mishandled sample here, an equipment failure there—they’re usually not a big deal to fix. But infrequent random errors, especially in high-volume automated tests, can be challenging for clinical laboratorians to identify and rectify in real time. Yet doing so is critical because these problems affect patient care, over and over again.
“As much as we like to believe that errors should not occur in the clinical laboratory, they can and they do,” said Clarence Chan, MD, PhD, a clinical chemistry fellow in the department of pathology at the University of Chicago. “It’s important that we have a rational and objective approach to dealing with these kinds of situations.”
During a roundtable session at the upcoming 2023 AACC Annual Scientific Meeting & Clinical Lab Expo, Chan will present a case study about how his team discovered and investigated random errors that were reoccuring over time. He described the errors as hard to catch even though the lab had quality-control measures in place.
“That’s the whole point of quality control, but sometimes the errors are so sporadic that you don’t always see them,” Chan said. “By coincidence, we had a few primary care doctors asking us about [a couple of results].” That kicked off an investigation into what could be causing such odd and seemingly random recurring errors.
Chan said this case is unique because of its scope–the team reviewed more than 11,000 results over a fairly long period of time–and because it required them to identify a very small fraction of spurious results within that large group. While the details of his experience won’t universally apply to other labs, he hopes participants can learn from how they solved the mystery. This process included brainstorming possible issues and systemically investigating each one until they found the root cause.
Another way labs can benefit from Chan’s insights is hearing how the team applied tools like data analysis and data informatics to their investigation.
“The goal is not to give someone an exact prescription or algorithm of how you deal with these scenarios,” he said. “Every situation will be different.” He added that his team didn’t need high-tech tools to unlock their error-causing mystery. In fact, one of the most important pieces of software they used was Microsoft Excel. “We didn’t have to do any hardcore programming, even though we handle large volumes of data. Understanding how to effectively use Excel, while also recognizing its limits and pitfalls, can also help develop an approach for using more conventional programming software such as R and Python” he said.
The roundtable will empower laboratorians with little to no prior experience in data analytics to gain confidence using large datasets in today’s increasingly digitized healthcare system. This skill is becoming even more critical, given trends towards collecting and analyzing more data across healthcare settings, including clinical laboratories. Globally, “there’s been this push for how do we get that information more efficiently and make more out of it. We’re turning out patient results all the time,” he said. “Not only are you ensuring they're accurate and precise from a technical standpoint, but when there are questions about when things go wrong, how do we get the relevant information?”
“As much as we like to believe that errors should not occur in the clinical laboratory, they can and they do,” said Clarence Chan, MD, PhD, a clinical chemistry fellow in the department of pathology at the University of Chicago. “It’s important that we have a rational and objective approach to dealing with these kinds of situations.”
During a roundtable session at the upcoming 2023 AACC Annual Scientific Meeting & Clinical Lab Expo, Chan will present a case study about how his team discovered and investigated random errors that were reoccuring over time. He described the errors as hard to catch even though the lab had quality-control measures in place.
“That’s the whole point of quality control, but sometimes the errors are so sporadic that you don’t always see them,” Chan said. “By coincidence, we had a few primary care doctors asking us about [a couple of results].” That kicked off an investigation into what could be causing such odd and seemingly random recurring errors.
Chan said this case is unique because of its scope–the team reviewed more than 11,000 results over a fairly long period of time–and because it required them to identify a very small fraction of spurious results within that large group. While the details of his experience won’t universally apply to other labs, he hopes participants can learn from how they solved the mystery. This process included brainstorming possible issues and systemically investigating each one until they found the root cause.
Another way labs can benefit from Chan’s insights is hearing how the team applied tools like data analysis and data informatics to their investigation.
“The goal is not to give someone an exact prescription or algorithm of how you deal with these scenarios,” he said. “Every situation will be different.” He added that his team didn’t need high-tech tools to unlock their error-causing mystery. In fact, one of the most important pieces of software they used was Microsoft Excel. “We didn’t have to do any hardcore programming, even though we handle large volumes of data. Understanding how to effectively use Excel, while also recognizing its limits and pitfalls, can also help develop an approach for using more conventional programming software such as R and Python” he said.
The roundtable will empower laboratorians with little to no prior experience in data analytics to gain confidence using large datasets in today’s increasingly digitized healthcare system. This skill is becoming even more critical, given trends towards collecting and analyzing more data across healthcare settings, including clinical laboratories. Globally, “there’s been this push for how do we get that information more efficiently and make more out of it. We’re turning out patient results all the time,” he said. “Not only are you ensuring they're accurate and precise from a technical standpoint, but when there are questions about when things go wrong, how do we get the relevant information?”
Latest AACC 2023 News
- First-of-Its-Kind Single-Cell Clinical Microbiology Platform Wins 2023 Disruptive Technology Award
- Ground-Breaking Phage-Based Diagnostic Kit for Laboratory Tuberculosis Testing Presented at AACC 2023
- Laboratory Experts Show How They Are Leading the Way on Global Trends
- Unique Competition Focuses on Using Data Science to Forecast Preanalytical Errors
- Best Approach to Infectious Disease Serology Testing for Laboratorians and Clinicians Discussed at AACC 2023
- Breaking Research Throws Light on COVID, Flu, and RSV Co-Infections
- New Research Shows Self-Collected Tests Perform Similarly to Provider-Collected Tests for Detecting STIs
- AI Predicts Multiple Sclerosis Risk, Flags Potentially Contaminated Lab Results
- Scientific Session Explores Role of Technology in New Era of Specimen Transport
- Prevencio Presents AI-Driven Platform for Medical Diagnostic Test Development
- Scientific Session Explores Future Role of AI and ML in Clinical Laboratory
- SARSTEDT Demonstrates Pre-Analytic Innovations for Improving Specimen Quality, Reducing TAT and Automating Labs
- World's First Large Sample Volume, Open-Assay, Super-fast, Ultra-Sensitive, and Sample-To-Answer PCR Instrument
- Vital Biosciences Unveils Revolutionary POC Lab Testing Platform
- World's Smallest POC Device for Complete Blood Count in 30 Minutes Unveiled
- General Biologicals Unveils CTC Cancer Detection Products and Automated Molecular System
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreMolecular Diagnostics
view channel
Blood Test Could Predict Likelihood of Breast Cancer Spreading to The Bone
When breast cancer spreads to other parts of the body, it becomes secondary or metastatic breast cancer—a stage that, while treatable, is currently incurable. The bone is the most common site for this... Read more
New Infectious Disease Analytics Platform Speeds Up Clinical Decision-Making at POC
During the COVID-19 pandemic, the importance of accurate and timely interpretation of diagnostic data became evident in shaping both public health strategies and clinical outcomes. As the world now grapples... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreTechnology
view channel
Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
Many people around the world still lack access to affordable, easy-to-use diagnostics for diseases like cancer, HIV, and influenza. Conventional sensors, while accurate, often rely on expensive equipment... Read more
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more