Finding Needles in a Haystack: How One Lab Identified Random Errors in a Large Dataset
By Jen A. Miller (AACC) Posted on 07 Jul 2023 |

Illustration
Lab errors are bound to happen. A mishandled sample here, an equipment failure there—they’re usually not a big deal to fix. But infrequent random errors, especially in high-volume automated tests, can be challenging for clinical laboratorians to identify and rectify in real time. Yet doing so is critical because these problems affect patient care, over and over again.
“As much as we like to believe that errors should not occur in the clinical laboratory, they can and they do,” said Clarence Chan, MD, PhD, a clinical chemistry fellow in the department of pathology at the University of Chicago. “It’s important that we have a rational and objective approach to dealing with these kinds of situations.”
During a roundtable session at the upcoming 2023 AACC Annual Scientific Meeting & Clinical Lab Expo, Chan will present a case study about how his team discovered and investigated random errors that were reoccuring over time. He described the errors as hard to catch even though the lab had quality-control measures in place.
“That’s the whole point of quality control, but sometimes the errors are so sporadic that you don’t always see them,” Chan said. “By coincidence, we had a few primary care doctors asking us about [a couple of results].” That kicked off an investigation into what could be causing such odd and seemingly random recurring errors.
Chan said this case is unique because of its scope–the team reviewed more than 11,000 results over a fairly long period of time–and because it required them to identify a very small fraction of spurious results within that large group. While the details of his experience won’t universally apply to other labs, he hopes participants can learn from how they solved the mystery. This process included brainstorming possible issues and systemically investigating each one until they found the root cause.
Another way labs can benefit from Chan’s insights is hearing how the team applied tools like data analysis and data informatics to their investigation.
“The goal is not to give someone an exact prescription or algorithm of how you deal with these scenarios,” he said. “Every situation will be different.” He added that his team didn’t need high-tech tools to unlock their error-causing mystery. In fact, one of the most important pieces of software they used was Microsoft Excel. “We didn’t have to do any hardcore programming, even though we handle large volumes of data. Understanding how to effectively use Excel, while also recognizing its limits and pitfalls, can also help develop an approach for using more conventional programming software such as R and Python” he said.
The roundtable will empower laboratorians with little to no prior experience in data analytics to gain confidence using large datasets in today’s increasingly digitized healthcare system. This skill is becoming even more critical, given trends towards collecting and analyzing more data across healthcare settings, including clinical laboratories. Globally, “there’s been this push for how do we get that information more efficiently and make more out of it. We’re turning out patient results all the time,” he said. “Not only are you ensuring they're accurate and precise from a technical standpoint, but when there are questions about when things go wrong, how do we get the relevant information?”
“As much as we like to believe that errors should not occur in the clinical laboratory, they can and they do,” said Clarence Chan, MD, PhD, a clinical chemistry fellow in the department of pathology at the University of Chicago. “It’s important that we have a rational and objective approach to dealing with these kinds of situations.”
During a roundtable session at the upcoming 2023 AACC Annual Scientific Meeting & Clinical Lab Expo, Chan will present a case study about how his team discovered and investigated random errors that were reoccuring over time. He described the errors as hard to catch even though the lab had quality-control measures in place.
“That’s the whole point of quality control, but sometimes the errors are so sporadic that you don’t always see them,” Chan said. “By coincidence, we had a few primary care doctors asking us about [a couple of results].” That kicked off an investigation into what could be causing such odd and seemingly random recurring errors.
Chan said this case is unique because of its scope–the team reviewed more than 11,000 results over a fairly long period of time–and because it required them to identify a very small fraction of spurious results within that large group. While the details of his experience won’t universally apply to other labs, he hopes participants can learn from how they solved the mystery. This process included brainstorming possible issues and systemically investigating each one until they found the root cause.
Another way labs can benefit from Chan’s insights is hearing how the team applied tools like data analysis and data informatics to their investigation.
“The goal is not to give someone an exact prescription or algorithm of how you deal with these scenarios,” he said. “Every situation will be different.” He added that his team didn’t need high-tech tools to unlock their error-causing mystery. In fact, one of the most important pieces of software they used was Microsoft Excel. “We didn’t have to do any hardcore programming, even though we handle large volumes of data. Understanding how to effectively use Excel, while also recognizing its limits and pitfalls, can also help develop an approach for using more conventional programming software such as R and Python” he said.
The roundtable will empower laboratorians with little to no prior experience in data analytics to gain confidence using large datasets in today’s increasingly digitized healthcare system. This skill is becoming even more critical, given trends towards collecting and analyzing more data across healthcare settings, including clinical laboratories. Globally, “there’s been this push for how do we get that information more efficiently and make more out of it. We’re turning out patient results all the time,” he said. “Not only are you ensuring they're accurate and precise from a technical standpoint, but when there are questions about when things go wrong, how do we get the relevant information?”
Latest AACC 2023 News
- First-of-Its-Kind Single-Cell Clinical Microbiology Platform Wins 2023 Disruptive Technology Award
- Ground-Breaking Phage-Based Diagnostic Kit for Laboratory Tuberculosis Testing Presented at AACC 2023
- Laboratory Experts Show How They Are Leading the Way on Global Trends
- Unique Competition Focuses on Using Data Science to Forecast Preanalytical Errors
- Best Approach to Infectious Disease Serology Testing for Laboratorians and Clinicians Discussed at AACC 2023
- Breaking Research Throws Light on COVID, Flu, and RSV Co-Infections
- New Research Shows Self-Collected Tests Perform Similarly to Provider-Collected Tests for Detecting STIs
- AI Predicts Multiple Sclerosis Risk, Flags Potentially Contaminated Lab Results
- Scientific Session Explores Role of Technology in New Era of Specimen Transport
- Prevencio Presents AI-Driven Platform for Medical Diagnostic Test Development
- Scientific Session Explores Future Role of AI and ML in Clinical Laboratory
- SARSTEDT Demonstrates Pre-Analytic Innovations for Improving Specimen Quality, Reducing TAT and Automating Labs
- World's First Large Sample Volume, Open-Assay, Super-fast, Ultra-Sensitive, and Sample-To-Answer PCR Instrument
- Vital Biosciences Unveils Revolutionary POC Lab Testing Platform
- World's Smallest POC Device for Complete Blood Count in 30 Minutes Unveiled
- General Biologicals Unveils CTC Cancer Detection Products and Automated Molecular System
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
Children are experiencing metabolic problems at increasingly younger ages, placing them at higher risk for serious health issues later in life. There is a growing need to identify this risk from birth... Read more
Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
Parkinson’s disease is a neurodegenerative condition typically diagnosed at an advanced stage based on clinical symptoms, primarily motor disorders. However, by this time, the brain has already undergone... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more